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Concurrent MR-NIR Imaging for

Breast Cancer Diagnosis
Birsen Yazici

I. INTRODUCTION

Near infrared (NIR) diffuse optical imaging provides quantitative functional information from breast tissue that

can not be obtained by conventional radiological methods. NIR techniques can providein vivo measurements

of oxygenation and vascularization state, the uptake and release of molecular contrast agents and chromophore

concentrations with high sensitivity. There is considerable evidence that tumor growth is dependent on angio-

genesis [8]- [10], and that tumor aggressiveness can be assessed from its increased number of new vessels and

reduced oxygenation state relative to normal breast tissue and benign breast lesions [11]- [13]. NIR diffuse optical

tomographic (DOT) methods has the potential to characterize angiogenesis related vessel density as it measures

the total hemoglobin concentration and provide the ability to differentiate between benign and malignant lesions

based on oxygen saturation. Furthermore, NIR methods are non-ionizing, relatively inexpensive and can be made

portable.

The diagnosis and management of cancer involves several stages where magnetic resonance (MR) plays a

valuable and growing role. MRI of the breast is now a routine part of the clinical care in many centers [16]-

[18]. Magnetic Resonance imaging (MRI) is indicated in patients with inconclusive clinical and/or mammographic

examinations. Patients that may benefit include women with radiographically dense breasts, and high risk potential

population [19]- [20]. MRI possesses less than 10% contrast for soft tissue pathology [21]. Gadolinium (Gd)

enhanced MRI offers much better contrast and is specific for tumor vessel imaging. However, the signal in the

Gd-MRI arises from the larger vessels as the contrast agent is flushed out of the vascular bed of the tumor [22].

In comparison, NIR measurements of absorption have extremely high contrast. It was reported that 5% change

in vascular density as measured histologically in ductal carcinomas leads to approximately 300% contrast in NIR

absorption coefficients [14]. Furthermore, there are studies suggesting that the kinetics of contrast enhanced optical

spectroscopy provides information about the cellular spaces [15]. On the other hand, NIR DOT suffers from poor

spatial resolution and as such, it is unlikely that NIR imaging will be a stand-alone screening method in the general
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population. Therefore, we believe that the concurrent MR and NIR imaging brings together the most advantageous

aspects of the two imaging modalities (structural and functional). In the future, we envision that this multimodality

imaging approach will lead to high resolution hemoglobin tomography and comprehensive quantitative functional

tissue characterization to differentiate malignant and benign tumors.

In this project, the clinical studies are performed using the novel MR-NIR hybrid time-resolved spectroscopy

(TRS) imager and fast Indocynine Green (ICG) enhanced spectroscopic imager developed by Dr. Chance, a Co-PI

of this proposal, at the University of Pennsylvania (UPenn), Biophysics Department, Diffuse Optical Imaging and

Spectroscopy Laboratory.

The central hypothesis of this project is that the concurrent MR-NIR diffuse optical tomographic methods coupled

with fast contrast enhanced NIR spectroscopic methods provide fundamentally new quantitative functional and

structural information for breast cancer tumor characterization and detection. This new information can be obtained

by novel modeling, analysis and data fusion methods from the tomographic, temporal and cellular-based contrast

measurements, which exploit fast imaging techniques together with TRS tomographic methods. In this project,

we investigate new methods for multi-modality high spatial resolution hemoglobin tomography, pharmacokinetic

modeling of molecular contrast agents based on fast NIR spectroscopy and analysis of structural and functional

information provided by MR and NIR imaging methods for breast cancer detection based on receiver operating

characteristics methodology. Specific aims of the project are as follows:

• Aim 1: Utilize a priori anatomical information provided by MRI, to reconstruct 3D high resolution hemoglobin,

water and lipid concentration, and oxygen saturation images directly from 6 wavelength time resolved optical

measurements. Evaluate improvements in image reconstruction between that of stand-alone NIR and concurrent

MR-NIR measurements using water and lipid images obtained from MRI.

• Aim 2: Develop a compartmentalized pharmacokinetic modeling of ICG, optical contrast agent, and extract

quantitative parameters that can characterize tumor metabolism and angiogenesis. Compare ICG kinetics with

the Gadolinium, MR contrast agent, kinetics and biopsy findings.

• Aim 3: Evaluate accuracy of breast cancer diagnosis based on the quantitative functional information extracted

from stand-alone NIR system. This information includes hemoglobin, water and lipid concentration, optical

scatter power and oxygen saturation images, and ICG pharmacokinetic parameters. Evaluate the added value

of ICG kinetic parameters in breast cancer diagnosis.

• Aim 4: Combine NIR based breast cancer diagnosis features with the systematic MR breast architecture and

kinetics interpretation model developed by Dr. Nunes, M.D, Co-PI of this proposal, to evaluate the sensitivity

and specificity of concurrent MR-NIR imaging method. Compare results with that of stand-alone MR and NIR
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results.

In the following sections, we will provide detailed description of our current research in line with the statement

of work (SOW) and the aims outlined above. For the period of June 1st, 2005 to May 31st 2006, SOW includes

only the first two aims of the project.

II. BODY

In the year 2 of the project, SOW includes tasks related to Aim 2 and 3 of the project. Below, we describe the

works that has been performed towards the Aim 2, Task 3 and Aim 3 Tasks 1 and 2. We also improved upon the

Task 1 of Aim 1.

A. AIM 2 - Tasks 3

• Task 3. Extract kinetic parameters frominvivo NIR measurements.9-18th month

1) Pharmacokinetic Modeling and Compartmental Model Analysis:In general, the continuous time state-space

representation for ann-compartment model is given by

Ċ(t) = K(αn)C(t) (1)

m(t) = V(αn)C(t) (2)

whereC(t) denotes the concentration vector whose elements are the concentrations of the fluorescence agents in

different compartments, anḋC(t) denotes its time derivative.m(t) is the bulk fluorescence concentration,n is the

number of compartments,αn is the parameter vector whose elements are the pharmacokinetic rate constants and

volume fractions.K(αn) is the system matrix with entries being the pharmacokinetic rates, andV(αn) is the vector

containing the volume fractions [3].

Although the formulation for the direct reconstruction of pharmacokinetic rate images can be applicable for

n-compartment models, here the two-compartment model for ICG pharmacokinetics will be our running example

[5], [6]. Based on a two-compartment model for ICG kinetics, as shown in Figure 1, the ICG transition between

the two compartments can be modeled by two coupled differential equations

dCe(t)
dt

= −koutCe(t) + kinCp(t), (3)

dCp(t)
dt

= −(kin + kelm)Cp(t) + koutCe(t). (4)
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Here, C(t) in (1) and (2) includes,Cp(t) and Ce(t), representing the ICG concentrations in the plasma and

extracellular extravascular space (EES), respectively. The parameter vector,α2, includes,kin, kout, kelm, vp, and

ve,;

α2 = [kin kout kelm vp ve]T (5)

wherekin and kout are the pharmacokinetic rates that govern the leakage into and the drainage out of the EES,

kelm describes the ICG elimination from the body through kidneys and livers, andvp and ve are the plasma and

EES volume fractions, respectively.

Capillary

Cp, vp
kelm

kin kout
?

-

6

EES

Ce, ve

Fig. 1. Block diagram of the two-compartment model for ICG pharmacokinetics.

Here, to obtain 2-D images of pharmacokinetic rates and fluorescence agent concentrations in different compart-

ments, we extend the compartmental model equation, (1) and (2) to spatially resolved model as follows:



Ċ(r1, t)
...

Ċ(rN , t)


 =




K(αn(r1)) 0 0

0
... 0

0 0 K(αn(rN ))







C(r1, t)
...

C(rN , t)


 + ω(r , t) (6)

where ω(r , t) is uncorrelated zero mean Gaussian processes with covariance matrixQ, representing the small

deviations resulting from model mismatch.r = [r1 r2....rN ], and rj is the location of thejth voxel for j =

1, 2, 3...N , N being the number of total voxels in the discretized domain.




m(r1, t)
...

m(rN , t)


 =




V(αn(r1)) 0 0

0
... 0

0 0 V(αn(rN ))







C(r1, t)
...

C(rN , t)


 + η(r , t) (7)

whereη(r , t) is a zero mean Gaussian process with covariance matrixR presenting the noise in the measurements.
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The implicit form of (6) and (7) can be expressed as

Ċ(r , t) = K(αn(r))C(r , t) + ω(r , t) (8)

m(r , t) = V(αn(r))C(r , t) + η(r , t). (9)

The quantity we wish to reconstruct is the spatially varying pharmacokinetic rate parameters instead of the absorption

coefficient of the florescence agent as is commonly the case in fluorescence diffuse optical tomography (FDOT)

[1]. To do this, we first need to develop a mapping which relates the boundary flux measurements to the bulk

florescence agent concentrations in tissue. This mapping can be obtained by using FDOT forward model which

will be explained in the next section.

2) Fluorescence Diffuse Optical Tomography:We used a coupled system of diffusion equations to model

fluorescence light propagation in tissue [1]. Based on the coupled diffusion equations, the forward model for

FDOT can be expressed as:

Ψ(r , t) = f(µaf (r , t)), (10)

whereµaf (r , t) = [µaf (r1, t), · · · , µaf (rN , t)] is the time dependent absorption coefficient of the fluorescence agent,

Ψ(r , t) = [Ψ(r1, t), · · · , Ψ(rN , t)] is the time-dependent boundary flux measurements, andf is a nonlinear function

defined by the coupled diffusion equation. Under the assumption that the exogenous optical properties has no effect

on endogenous optical properties, (10) can be linearized to obtain

Ψ(r , t) = Wµaf (r , t), (11)

whereW is the weight matrix relating the absorption coefficients to the boundary measurements. This map can be

numerically calculated using finite elements methods (FEM) of finite different methods (FDM) [4].

The absorption coefficient of the fluorescence agents is related to the bulk fluorescence agent concentration as

follows:

µaf (r , t) = εm(r , t) (12)

whereε is the extinction coefficient of the fluorescence agent at the excitation wavelength.

3) Pharmacokinetic Rate to Measurement Map for Fluorescence Agents:To derive a complete formulation to

reconstruct the pharmacokinetic parameters and concentrations in different compartments using the photon flux

measurements, we combined the FDOT forward problem equations, (10) or (11) with the compartmental model

equations.
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Combining (9) and (10), with the knowledge of the linear relationship between the absorption coefficient and the

bulk fluorescence concentration, (12), nonlinear FDOT forward problem is related to the bulk fluorescence agent

concentration as:

Ψ(r , t) = g(m(r , t)) ∼ g(V(αn(r))C(r , t)) (13)

whereg is the non-linear function which relates the bulk fluorescence agent concentrations to the boundary flux

measurements.

The linearized version of (11) is given as:

Ψ(r , t) = εWm(r , t)

= εWV(αn(r))C(r , t) + εWη(r , t)

= ΓC(r , t) + εWη(r , t), (14)

whereW, V andη(r , t) are defined above andΓ = εWV(αn(r)).

The equations (8) and (13), which combine the FDOT forward problem with the compartment model equations

constitute the set of equations which will be used for the direct reconstruction of pharmacokinetic rates, volume

fractions, and fluorescence concentrations in different compartments.

4) Discretization of the Compartmental Model Equations and a Dynamic Model for System Parameters:The

source detector measurements in (9) are collected at discrete time instances,t = kT , k = 0, 1, ..., whereT is the

sampling period. Therefore, the continuous model described in (8) and (14) has to be discretized. To simplify our

notation, we shall useC(r , k) = C(r , kT ) andΨ(r , k) = Ψ(r , kT ).

Let θn denote the discrete-time parameter vector of the pharmacokinetic rates and volume fractions. The parameter

vector θn(r) can be either time dependent or time independent. The formulation given in this work can be used

for both cases. In our case, the pharmacokinetic rates and the volume fractions are time independent. However, in

order to estimateθn within the EKF framework, the following dynamic model is introduced:

θn(r , k + 1) = θn(r , k) + ς(r , k), (15)

where ς(r , k) is a zero mean white noise process with covariance matrixS . The details of the dynamic model

introduced for the joint estimation of the system parameters and the states can be found in [5].

5) A priori information for Pharmacokinetic Rates and Volume Fractions:To improve the robustness of estimates

of the parameters we imposea priori information on pharmacokinetic parameters and volume fractions. Here, we

assume that there is no information about the tumor structure and used a 4-pixel neighborhood model.
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Using the 4-pixel neighbor model with equal weightsβ, the random process,θn(r , k), can be modeled as:

θn(rj , k + 1) = βθn(rj , k) + β
4∑

i=1

θn(rji, k) + ς(r , k). (16)

6) Extended Kalman Filter (EKF) Formulation:In our state-space model, (8) and (9), both the states (con-

centrations) and system parameters (pharmacokinetic rates and volume fractions) are unknown. In this case, the

state-space model can be regarded as a non-linear model in which system parameters and states are combined to

form the new states of the non-linear model. This system is then linearized and solved for the unknown states using

EKF framework [5]. To solve for the concentrations and the unknown parameters, the parameter vectorθn(r , k) is

inserted into the concentration vectorC(r , k) as:

 C(r , k + 1)

θn(rj , k + 1)


=


 K(θn(r , k))C(r , k)

βθn(rj , k) + β
∑4

i=1 θn(rji, k)


+


ω(r , k)

ς(r , k)


 . (17)

The measurement equation for the non-linear case is given as:

Ψ(r , k) =
[

g(V(αn(r))C(r , k)) 0
]

 C(r , k)

θn(r , k)


 + η(r , k). (18)

Without explicit proof, the extended Kalman filtering algorithm for simultaneous estimation of concentrations

and parameters for the nonlinear case, (13), is given follows:

 Ĉ(r , 0)

θ̂n(r , 0)


 =


 E(C(r , 0))

θ̂n(r , 0)


 (19)

P0,0 =


 V ar(C(r , 0)) 0

0 Sd


 , (20)

whereE denotes the expected value ofC(r , 0), P is the error covariance matrix, andSd is the preassigned covariance

matrix of the unknown system parameters.

The following equations describe how the concentration estimates and error covariance matrix are updated at the

kth time instant given all the measurements up to(k − 1)th time instant. Fork = 1, 2, ...,

 Ĉ(r , k|k − 1)

θ̂n(rj , k|k − 1)


=


 K(θ̂n(r, k − 1))Ĉ(r , k − 1)

βθ̂n(rj , k − 1) + β
∑4

i=1 θ̂n(rji, k)


 (21)

Pk|k−1 = J(k − 1)Pk−1,k−1JT (k − 1) +


 Qd 0

0 Sd


 , (22)
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whereJ is the Jacobian matrix given by

J(k) =


 K(θ̂n(r , k)) ∂

∂θ
[K(θ̂n(r , k))Ĉ(r , k)]

∂
∂C θ̂n(r , k) ∂

∂
ˆθn

θ̂n(r , k)


 . (23)

Gk = Pk,k−1ΛT [ΛPk,k−1ΛT + R]−1, (24)

whereGk is the recursive Kalman gain,R is the covariance matrix of the measurements andΛ is:

Λ =




∂
∂Cg(V(θn(r , k|k − 1)C(r , k|k − 1))

.

∂
∂θ

(
∂

∂Cg(V(θn(r , k|k − 1)C(r , k|k − 1)
)




T

, (25)

Pk,k = [I −GkΛ]Pk,k−1. (26)

whereI is the identity matrix.
 Ĉ(r , k)

θ̂n(r j , k)


=


 Ĉ(r , k|k − 1)

βθ̂n(rj , k|k − 1) + β
∑4

i=1 θ̂n(rji, k|k − 1)




+Gk(Ψ(r , k)− g(V(θn(r , k|k − 1)C(r , k|k − 1)).

B. Clinical Results

1) Apparatus:We used the data collected with a continuous wave (CW) NIR imaging apparatus. The apparatus

has 16 light sources, which are tungsten bulbs with less than 1 watt of output energy. They are located on a circular

holder at an equal distance from each other with 22.5 degree apart. Sixteen detectors, namely, silicon photodiodes,

are situated in the same plane. The breast is arranged in a pendular geometry with the source-detector probes gently

touching its surface. Figure 2 illustrates the configuration of the apparatus and the configuration of the detectors

and the sources in a circular plane. A band pass filter at 805nm, the absorption peak of ICG, is placed in front of

the sources to select the desired wavelength. A set of data for one source is collected every 500 ms. The total time

for a whole scan of the breast including 16 sources and 16 detectors is 8.8 seconds. The detectors use the same

positions as the sources to collect the light originating from one source at a time. Only the signals from the farthest

11 detectors are used in the analysis. For example, when Source 1 is on, the data is collected using detectors 4 to

14. A more detailed explanation of the apparatus and the data collection procedure can be found in [7].

2) Protocol: Patients with suspicious breast tumors were enrolled for this study. ICG was injected intravenously

by bolus with a concentration of 0.25 mg per kg of body weight. Diagnostic information is obtained using biopsy

results. Since biopsy modifies the blood volume and blood flow around the tumor region, measurements were made

before the biopsy. Data acquisition started before the injection of ICG and continued for 10 minutes.
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Fig. 2. The cut section of the 16 light source-detector device, holding a human breast inside. The diameter can be fitted easily. The 16

light source-detector combinations in each arm are located equal distance, but when the device fits the breast, only the diameter chances.
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Fig. 3. Differential absorption reconstruction images for a set of time instants for Case 1.

3) Tumor Information:Three different patients with different tumor types are included in this study. First case,

Case 1, is fibroadenoma, which corresponds to a mass estimated to be 1−2 cm in diameter within a breast of 9 cm

diameter. Second case, Case 2, is adenocarcinoma corresponding to a tumor estimated to be 2−3 cm in diameter

within a breast of 7.7 cm diameter. The third case, Case 3, is invasive ductal carcinoma, which corresponds to a

mass estimated to be 3−4 cm in diameter.

4) ICG Concentration Measurements for Pharmacokinetic Parameter Estimations:Using the CW imager de-

scribed above, for each patient, sufficient number of source detector readings were collected from different angles.

Reconstruction of differential absorption images using the source-detector readings was discussed in Intes et al. [2].

A sample set of reconstructed differential absorption images for Case 1, Case 2, and Case 3 for 9 selected time

instants are shown in Figure 3, 4, and 5, respectively.

Using the linear relationship between ICG concentration and absorption coefficient, we obtained ICG concentra-

tion images from differential absorption images for each case. A sample set of ICG concentration images for the

selected time instants is shown in Figure 6, 7, and 8 for Cases 1, 2 and 3, respectively. Here, the concentration

images represent bulk ICG concentration in the tissue, not specifically in plasma or the EES.
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Fig. 4. Differential absorption reconstruction images for a set of time instants for Case 2.
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Fig. 5. Differential absorption reconstruction images for a set of time instants for Case 3.
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Fig. 6. 2-D ICG concentration images for a set of time instants for Case 1.
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Fig. 8. 2-D ICG concentration images for a set of time instants for Case 3.

Using the ICG concentration curves, we estimated the pharmacokinetic parameters for each pixel based on the

two-compartment model. We then constructed 2-D permeability rate images using values of these parameters. 2-D

images forkin, kout for two-compartmental model for each case are shown in Figures 9 (a), (b), 10 (a), (b), and

11 (a), (b), respectively. We also analyzed whether the kinetic rates are statistically different or not for the inside

and outside the tumor region. Thekin and kout values from inside and outside the tumor region are statistically

different with a p-value of less than 0.0001 for all cases.

We constructed 2-D ICG concentration images for plasma and the EES. Figures 12-17 show the ICG concentration

in the EES and plasma for 3 different time instants for Case 1, 2, 3, respectively. We observed that ICG concentrations

in plasma and the EES compartments are higher around the tumors agreeing with the hypothesis that around tumor

region ICG may act as a diffusible extravascular flow in leaky capillary of cancer vessels.

C. AIM 3 - Tasks 1 and 2

The SOW with regard to Aim 3 includes the following specific tasks:
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Fig. 9. 2-D images for pharmacokinetic rateskin andkout for Case 1.
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Fig. 10. 2-D images for pharmacokinetic rateskin andkout for Case 2.
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Fig. 11. 2-D images for pharmacokinetic rateskin andkout for Case 3.
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Fig. 12. 2-D ICG concentration images in plasma for Case 1 for the246.4th, 334.4th, and422.4th seconds.
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Fig. 13. 2-D ICG concentration images in the EES for Case 1 for the246.4th, 334.4th, and422.4th seconds.
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Fig. 14. 2-D ICG concentration images in plasma for Case 2 for the228.8th, 316.8th, and404.8th seconds.
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Fig. 15. 2-D ICG concentration images in the EES for Case 2 for the228.8th, 316.8th, and404.8th seconds.
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Fig. 16. 2-D ICG concentration images in plasma for Case 3 for the246.4th, 378.4th, and510.4th seconds.
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Fig. 17. 2-D ICG concentration images in the EES for Case 3 for the246.4th, 378.4th, and510.4th seconds.

• Task 1. Determine statistical variability of each NIR feature inside and outside the suspected tumor in an

individual and evaluate the statistical significance of the measured difference with the instrumentation precision.

12-18th month

• Task 2. Design statistical classifiers to determine the ROC of each NIR feature for an individual.18-24th

month

• Task 3. Evaluate the ROC, positive predicted value (PPV) and negative predicted value (NPV) of various

combinations of the NIR features for an individual.24-27th month

• Task 4. Investigate the significance of the measured difference between malignant and benign tumor patient

groups for single and combined NIR features.27-30th month

Year 2 tasks involve Task 1 and 2.

• Task 1 and 2. The evaluation of ICG related parameter is partly addresses in Task 3 of Aim 2.

This work describes the characterization efficiency of incremental biochemical and physiological properties of

breast tumors [23]. In this work an NIR method which is capable of rapidly acquiring data from the human

breast with a handheld spectroscopy apparatus is used. The device measures relative increases of tumor hemoglobin

concentration and relative hemoglobin desaturation, all data being taken on a relative basis using generally the mirror

image site on the contralateral breast, substantially mitigating the multiple effects of variable demographic and

structural features of the human breast by measuring relative hemoglobin concentration and oxygenation compared

to a normal breast within subjects. In analyzing relative hemoglobin concentration against relative saturation, a

nomogram display conveniently segregates verified cancers from cancer-free breasts over a wide range of tumor

sizes and types.

1) Apparatus:In this study, a continuous wave (CW) near infra red spectrometer (NIRS) is used (Fig. 1) [23]. In

the center of the probe there is a 3-wavelength LED. The LED intensity is low, 10-15 mA. The probe consisted of

one multi-wavelength LED as a light source and 8 silicon diodes as detectors (Fig. 2). These 8 detectors surround

the LED at 4 cm distance, so that 8 locations over a 9 cm diameter area from a breast can be measured. The
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Fig. 18. A photograph of the whole apparatus (Fig. 1A) illustrates the handheld puck or probe, the coupling to the circuit box which

contains the drivers for the LED, the amplifiers for the OPTI-101s, the digitally controlled gain adjustment amplifier, the electronic switch

which decodes the light pulses and stores the information in a memory capacitor, the second set of switches which sample the memory

capacitor at a rate compatible with the computer ADC, the software for computing blood concentration and blood saturation and the display

on the computer which serves to normalize the signals through the digitally controlled amplifier.

light sources are flashed alternately 100 times per second and electronic circuits are designed to amplify and time

separate the signals in a sample and hold circuit which integrates the signals over an interval of a few seconds

sufficiently rapidly to follow the movements of the sensor over the breast, allowing usually 10 seconds for any

particular sensor position. The data are then digitized and presented as a running time display so that the operator

can be sure that stable readings are reached at each position of the sensor. The light intensity from the 8 detectors

were adjusted to be near 1 volt by gains set and calibrated with a phantom with known absorption and scattering

coefficients (µa = 0.04 to 0.07 andµ′s = 8 cm−1). The puck (Fig. 2) is then transferred to the contralateral breast to

include the mirror image location of the suspected cancer. The signal outputs from all source detector combinations

are recorded. The probe is then moved from the contralateral breast to the ipsilateral breast suspected of cancer.

The sensors giving the largest changes with respect to the mirror image position on the contralateral breast are

related to the suspected cancer. The procedure requires less than 10 minutes.

2) Subjects:This study includes two Clinical Centers: the Abramson Family Cancer Research Institute/Department

of Radiology of the Hospital of University of Pennsylvania (HUP), and the Department of Gynecology of Leipzig

University. The population targeted at HUP are those who have come for possible biopsy and for radiology. The

second group has come to the Breast Cancer Clinic at Leipzig. HUP and Leipzig provided 24 and 20 cancer patients,

respectively, and 64 and 8 non cancer disease patients, respectively. Skill has been required in order to ensure all

sensors were pressed upon the breast with equal pressure (∼ 3 mmHg). Patients were lying on their backs and the
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Fig. 19. The near infrared probe which 8 sources and 8 detectors.

puck was placed on the breast in such a way that coronal breast scan data is acquired (perpendicular to gravity).

3) Feature Extraction:The features that is used for tumor characterization may be computed using∆ε ≈ 1cm−1

and∆L = 4cm × 5 for pathlength factors of 5,∆OD = ∆ε.∆C.∆L whereOD is the optical density ,ε is the

extinction coefficient,C is blood concentration, andL is the mean pathlength of photons.

Then relative blood concentration,∆BV and oxygen saturation,∆Deoxy, can be approximated at two different

wavelengths by

∆BV ∝ 0.3∆OD730 + ∆OD850 (27)

∆Deoxy ∝ 1.3∆OD730 −∆OD850 (28)

The concentrations ofHb (hemoglobin),HbO2 (oxy hemoglobin) were calculated by a modified Beer-Lambert

Law where I is light intensity after absorption and scattering and and using known extinction coefficients ofHb,

HbO2 and differential pathlength factors [24].

∆BV and∆Deoxy can be calculated by using

∆BV ∝ ∆[Hb] + ∆[HbO2] (29)

∆Deoxy ∝ ∆[HbO2]−∆[Hb] (30)

Here it is important to note that∆BV and ∆Deoxy were based on a lipid blood oxygen model. Thus the

increments ofBV andDeoxy are relative to the contralateral breast:

∆BV = ∆BVtumor −∆BVcontra (31)

∆Deoxy = ∆Deoxytumor −∆Deoxycontra (32)

where∆BVtumor, ∆BVcontra are ∆BV in the tumor breast and the mirror image position of the contralateral

breast, respectively, and∆Deoxytumor, ∆Deoxycontra are ∆Deoxy in the tumor breast and the mirror image

position of the contralateral breast, respectively.
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4) Feature Analysis and Classification for Cancer Characterization:In this subsection, we present the set of

tumor classification features and the malignancy differentiation criteria. F1 denotes∆BV , F2 denotes∆Deoxy,

and F3 denotes,S, size of the tumor. We evaluate the malignancy differentiation capability of the individual features

and various combinations of the these features.

As a malignancy differentiation criterion, we used the Neyman-Pearson hypothesis testing method [25]. Neyman-

Pearson decision rule maximizes true positive rate subject to a given false positive rate. True positive rate is defined

as the ratio between the number of correct malignant decisions and total number of malignant cases. False positive

rate is the ratio between the number of incorrect malignant decisions and total number of benign cases.

Let F be a set of features chosen from F1 - F3. The Neyman-Pearson statistics is given by the following likelihood

ratio:
P (F |H1)
P (F |H0)

= l(F) (33)

whereP (F |H0) is the conditional probability ofF given that the tumor is benign, andP (F |H1) is the conditional

probability of F given that the tumor is malignant. In Neyman-Pearson likelihood ratio test; a threshold valueτα

is chosen so that the false positive probability is equal toα, i.e.,

α = P (l(F) > τα|H0) (34)

This results in the following malignancy differentiation criteria :

H0 : l(F) < τα =⇒ Benign tumor

H1 : l(F) > τα =⇒ Malignant tumor

Neyman-Pearson test is implemented using various classifiers, namely, k-nearest neighbor classifier (KNNC),

Parzen density based classifier (PAR), Automatic neural network classifier (NEURC), Normal densities based linear

classifier (LDC), Nearest mean classifier (NMC), Scaled nearest mean classifier (NMSC), Normal densities based

quadratic (multi-class) classifier (QDC), Uncorrelated normal densities based quadratic classifier (UDC). The more

details information on these classifiers can be found in [26].

We evaluated the malignancy differentiation capability of the following individual and combined features:

F1: ∆BV

F2 : ∆Deoxy

F3 : Tumor Size, (S)

F1-F2:∆BV and∆Deoxy

F1-F2-F3:∆BV , ∆Deoxy, andS
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TABLE I

AUC VALUES FOR DIFFERENT CLASSIFIERS FORF1-F2-F3:∆BV , ∆Deoxy, S

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC

AUC 0.9098 0.9041 0.9017 0.8984 0.8864 0.8843 0.8807 0.8752

TABLE II

AUC VALUES FOR DIFFERENT CLASSIFIERS FORF1-F2:∆BV , ∆Deoxy

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC

AUC 0.9001 0.8993 0.8930 0.8908 0.8992 0.8821 0.8782 0.8645

The evaluation is based on receiver operating characteristics (ROC) methodology. The ROC curve is obtained

by plotting the probability of false positive versus the probability of detection. The evaluation of the classification

methods is based on the area under the ROC curve (AUC). The best performing feature set is the combination of

the three features. Table 1 gives the AUC values for 8 different classifiers for all three features. The scaled nearest

mean classifier has the best performance in terms of classification with a AUC value of 0.9098. Table 2 gives

the AUC values for 8 different classifiers for the features∆BV and∆Deoxy. The scaled nearest mean classifier

has the best performance in terms of classification with a AUC value of 0.9001. Table 3 gives the AUC values

for 8 different classifiers for the feature∆BV . The nearest mean classifier has the best performance in terms of

classification with a AUC value of 0.8832. Table 4 gives the results 8 different classifiers for the feature∆Deoxy.

The nearest mean classifier has the best performance in terms of classification with a AUC of 0.8790.

Figures 3 and 4 show the distribution of features∆BV and ∆Deoxy extracted from benign and malignant

tumors. The thresholds computed using scaled nearest mean classifier and Parzen classifiers. In Fig. 5, ROC curves

TABLE III

AUC VALUES FOR DIFFERENT CLASSIFIERS FORF1: ∆BV

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC

AUC 0.8817 0.8764 0.8807 0.8779 0.8513 0.8778 0.8832 0.8302

TABLE IV

AUC VALUES FOR DIFFERENT CLASSIFIERS FORF2: ∆Deoxy

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC

AUC 0.8787 0.8764 0.8776 0.8711 0.8491 0.8613 0.8790 0.8331



22

−2 0 2 4 6 8 10
−50

−40

−30

−20

−10

0

10

20

30

∆BV

∆D
eo

xy

Bening Cases
Malignant Cases 
NMSC Classifier

Fig. 20. Scaled Nearest Mean Classifier and F1-F2 2-D data clustering.
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Fig. 21. Parzen and F1-F2 2-D data clustering.

for all of the features and the best two features, namely,∆Deoxy and ∆BV are plotted using scaled nearest

mean classifier. The observed area under the ROC curve for all the features and F1-F2 are 0.9098 and 0.9001,

respectively. In Fig. 6, ROC curves for individual features are plotted using nearest mean classifier. The observed

area under the ROC curve for∆Deoxy and∆BV are 0.8832 and 0.8790, respectively.
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Fig. 22. ROC curves for F1-F2-F3 and F1-F2 using NMSC Classifier.
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Fig. 23. ROC curves for F1and F2 using NMC Classifier.
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III. K EY RESEARCH ACCOMPLISHMENTS

1) We developed a new adaptive discretization method based on MR a priori information for diffuse optical

image reconstruction.

2) Born approximation based linearization is widely used in practical NIR image reconstruction algorithms. We

derived the Born expansion and Frechet derivatives of the coefficient-to-measurement map in diffuse optical

tomography and we analyzed the error due tomth order Born expansion in diffuse optical tomography.

3) We completed the work on two-level domain decomposition methods for diffuse optical tomography and

submitted as a journal paper. The work is accepted to appear inInverse Problems, and Institute of Physics

Journal.

4) We developed a direct reconstruction method for spatially resolved pharmacokinetic rate images of indocyanine

green and applied this method to human breast data. This work is now being prepared as a journal publications.

5) We performed an ROC analysis of NIR parameters collected from 116 patients using a handheld NIR

spectroscopy instrument and compared the discrimination capability of different NIR parameters using various

statistical classifiers and ROC methodology. This work is now being prepared as a journal publication.

6) We collected concurrent MR-NIR tomographic data and ICG data from 10 patients. We are currently pro-

cessing this data.

IV. REPORTABLE OUTCOMES

Complete list of reportable outcomes is given below:

1) B. Alacam, B. Yazici, X. Intes, B. Chance, ”Extended Kalman filtering for the modeling and analysis of

ICG pharmacokinetics in cancerous tumors using NIR optical methods,” to appear inIEEE Transactions in

Biomedical Engineering.

2) B. Alacam, B. Yazici, X. Intes, B. Chance, ”Analysis of ICG pharmacokinetics in cancerous tumors using

NIR optical methods” inProc. of EMBS-27th Anniversary Conference, September, 2005, Shanghai, China,

pp. 62 - 65.

3) B. Alacam, B. Yazici, X. Intes, S. Nioka, B. Chance, ”Spatially resolved pharmacokinetic rate images of ICG

using Near Infrared optical methods”, Proc. of 2006SPIE Photonic West, San Jose, California USA, 21- 26

January 2006, vol. 6088. pp. 455-464.

4) B. Alacam, B. Yazici, X. Intes, S. Nioka, B. Chance, ”Direct reconstruction of pharmacokinetic rate Images

of Indocyanine Green in fluorescence molecular tomography”Proceedings of Biomedical Optics Topical

Meeting, Fort Lauderdale, Florida, USA , 19-22 March, 2006, In print.
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5) B. Alacam, B. Yazici, A. Serdaroglu, X. Intes, B. Chance, ”Reconstruction of spatially resolved pharmacoki-

netic rate images of fluorescence agents in FDOT” to appear inProc. of EMBS-28thAnniversary Conference,

September, 2006, New York.

6) B. Alacam, B. Yazici, X. Intes, B. Chance, ”Direct reconstruction of spatially resolved pharmacokinetic rate

images of fluorescence agents” to be submitted toIEEE Transactions in Medical Imaging.

7) K. Kwon and B. Yazici, ”Two-level domain decomposition methods for diffuse optical tomography,” to appear

in Inverse Problems.

8) M. Guven, B. Yazici, K. Kwon, E. Giladi, X. Intes, ”Effect of Discretization error in diffuse optical absorption

imaging,” submitted toInverse Problems.

9) K. Kwon and B. Yazici, ”Born expansion and Frechet derivatives in diffuse optical tomography,” submitted

to Inverse Problems.

10) M. Guven, B. Yazici, K. Kwon, E. Giladi, X. Intes, ”Effect of Born Approximation in diffuse optical absorption

imaging,” in preparation.

11) M. Guven, B. Yazici, X.Intes, B. Chance, ”A hierarchical Bayesian formulation for diffuse optical tomography

with a priori anatomical information”, in the proceedings of ASILOMAR Conference, Pacific Grove, October

30-November 2, 2005.

12) M. Guven, B. Yazici, X.Intes, B. Chance, ”Diffuse optical tomography with a priori anatomical information”,

in the proceedings of Applied Imagery Pattern Recognition (AIPR) Workshop Emerging Technologies and

Applications for Imagery Pattern Recognition, Washington, DC, USA, October 19-21.

13) M. Guven, K. Kwon, B. Yazici, E. Giladi, X. Intes, ”A Priori Interpolation Error Based Mesh Generation for

Diffuse Optical Tomography” in the proceedings of Applied Imagery Pattern Recognition (AIPR) Workshop

Emerging Technologies and Applications for Imagery Pattern Recognition, Washington, DC, USA, October

19-21.

V. CONCLUSIONS

In the last 12 months, our collaborator, Dr. Britton Chance at University of Pennsylvania has provided 116

patient data collected using the handheld spectrometers. This data set is not tomographic, however, it is sufficiently

informative in understanding the value of the stand alone NIR features for breast cancer diagnosis. We have analyzed

this data using the ROC methodology and demonstrated that stand-alone NIR features yield a high AUC (0.9 or

above) for cancer diagnosis. We are in the process of documenting our results as a journal paper.

We have developed a direct pharmacokinetic rate imaging method for ICG. We have reported our research in
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three conference papers. We are currently in the process of documenting our research as a journal paper.

We have extended the two level domain decomposition methods and published it as a journal article. We have

developed adaptive discretization methods for diffuse optical tomography based on a priori information provided

by MR images and submitted this work as a journal paper. In practice, diffuse optical image reconstruction is

performed typically using linear forward model based on Born approximation. We analyzed the error in diffuse

optical image reconstruction due to Born approximation and submitted our results as a journal paper.

Dr. Chance has also collected MR-NIR concurrent tomographic data and ICG data from 10 patients. We are

currently in the process of processing this data. We plan to reconstruct diffuse optical tomographic images with

MR a priori information. We will also apply our direct reconstruction method to obtain IG pharmacokinetic rate

images. In the upcoming 12 months, we expect to collect more patient data and perform an ROC study on NIR

features extracted from tomographic images.
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Extended Kalman Filtering for the Modeling and
Analysis of ICG Pharmacokinetics in Cancerous

Tumors using NIR Optical Methods
Burak Alacam, Member, IEEE, Birsen Yazici*, Member, IEEE, Xavier Intes, Britton Chance

Abstract— Compartmental modeling of indocyanine green
(ICG) pharmacokinetics, as measured by near infrared (NIR)
techniques, has the potential to provide diagnostic information
for tumor differentiation. In this paper, we present three different
compartmental models to model the pharmacokinetics of ICG
in cancerous tumors. We introduce a systematic and robust
approach to model and analyze ICG pharmacokinetics based on
the extended Kalman filtering (EKF) framework. The proposed
EKF framework effectively models multiple-compartment and
multiple-measurement systems in the presence of measurement
noise and uncertainties in model dynamics. It provides simul-
taneous estimation of pharmacokinetic parameters and ICG
concentrations in each compartment. Moreover, the recursive
nature of the Kalman filter estimator potentially allows real
time monitoring of time varying pharmacokinetic rates and
concentration changes in different compartments. Additionally,
we introduce an information theoretic criteria for the best
compartmental model order selection, and residual analysis for
the statistical validation of the estimates. We tested our approach
using the ICG concentration data acquired from four Fischer rats
carrying adenocarcinoma tumor cells. Our study indicates that,
in addition to the pharmacokinetic rates, the EKF model may
provide parameters that may be useful for tumor differentiation.

Index Terms— Extended Kalman filter, indocyanine green,
compartmental analysis, pharmacokinetics, tumor characteriza-
tion.

I. INTRODUCTION

NEAR infrared (NIR) diffuse optical imaging and spec-
troscopy methods provide quantitative functional infor-

mation that cannot be obtained by the conventional radio-
logical methods [1]–[3]. NIR techniques can provide in vivo
measurements of the oxygenation and vascularization states,
uptake and release of optical contrast agents, and chromophore
concentrations with high sensitivity. In particular, NIR diffuse
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optical techniques in conjunction with optical contrast agents
have the potential to characterize angiogenesis, and to differ-
entiate between malignant and benign tumors [4]–[7].

At present, indocyanine green (ICG) is the only NIR optical
agent approved for human use. In NIR measurements, the
presence of ICG within an imaging volume results in an
increased signal that can be observed over the course of the
experiment. Study of the time kinetics of ICG concentration
curves may provide physiologically relevant information for
tumor differentiation. Specifically, cancerous tissue types are
expected to show high and fast uptake due to the proliferation
of ”leaky” angiogenetic microvessels, while normal and fatty
tissue show little uptake.

A number of research groups reported compartmental mod-
eling of ICG time-kinetic measurements using NIR methods
for tumor diagnosis in animal and human subjects [8]–[10].
A compartmental model is a mathematical description of the
concentrations of contrast agents in which each compartment
represents a kinetically distinct tissue type. It consists of
a set of coupled ordinary differential equations (ODE) and
a measurement model. Coefficients of the ODE’s are the
physiological parameters of interest that represent rates of
exchange between different compartments. These parameters
are non-linearly related to the total concentration of ICG
measured by NIR methods. Furthermore, concentration of
ICG in each compartment cannot be directly measured non-
invasively by NIR techniques, making the pharmacokinetic
parameter estimation a highly non-linear problem.

Current methods of ICG compartmental modeling involve
curve fitting methods and various techniques for solving differ-
ential equations. Gurfinkel et al. presented a two-compartment
model for ICG kinetics and estimated model parameters [8].
The measurements were obtained using a frequency domain
photon migration system coupled with a charge-coupled de-
vice. The pharmacokinetic parameters were estimated for each
pixel based on a curve fitting method. This study indicated that
model parameters show no difference in the ICG uptake rates
between normal and diseased tissue. Cuccia et al. presented
a study of the dynamics of ICG in an adenocarcinoma rat
tumor model [9]. A two-compartment model describing the
ICG dynamics was used to quantify physiologic parameters
related to capillary permeability. The ICG concentration curves
were fitted to the compartmental model using a non-linear
least squares Levenberg-Marquart algorithm. It was shown
that different tumor types have different capillary permeability
rates. Intes et al. presented the uptake of ICG by breast tumors
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using a continuous wave diffuse optical tomography apparatus
[10]. A two-compartment model was used to analyze the
pharmacokinetics of ICG. A curve fitting algorithm, namely
the non-linear Nelder-Mead simplex search, was used to
estimate the pharmacokinetic parameters. This study showed
that the malignant cases exhibit slower rate constants (uptake
and outflow) as compared to healthy tissue.

While the studies described above demonstrate the feasi-
bility of the ICG pharmacokinetics in tumor characterization;
due to the highly non-linear nature of the pharmacokinetic
parameter estimation, variation in parameter values from one
subject to another, and sparse data available in clinical and
laboratory settings, a systematic and robust approach is needed
to model, estimate and analyze ICG pharmacokinetics. Such
an approach must include: i) a method for compartmental
model order selection, ii) a robust method of estimating ICG
pharmacokinetic parameters, and iii) a method of validating
the selected model and the estimation results.

In this paper, we present three different compartmental
models for the ICG pharmacokinetics in cancerous tumors
and propose an extended Kalman filtering (EKF) framework
to estimate the model parameters. The models capture the
transportation of ICG between the vascular and extravascular
compartments, including interstitial fluid region, parenchymal
cell, intracellular binding site, and extravascular, extracellular
spaces (EES). The extended Kalman filter (EKF) is a recursive
modeling and estimation method with numerous advantages
in ICG pharmacokinetic modeling. These include: i) effective
modeling of multiple compartments, and multiple measure-
ment systems governed by coupled ordinary differential equa-
tions, in the presence of measurement noise and uncertain-
ties in the compartmental model dynamics; ii) simultaneous
estimation of pharmacokinetic model parameters and ICG
concentrations in each compartment, which are not accessible
in vivo by means of NIR techniques; iii) recursive estimation
of time-varying pharmacokinetic model parameters; iv) statisti-
cal validation of estimated concentrations and error bounds on
the pharmacokinetic parameter estimates; v) incorporation of
available a priori information about the initial conditions of the
permeability rates into the estimation procedure; vi) potential
real-time monitoring of ICG pharmacokinetic parameters and
ICG concentrations in different compartments due to the
recursive nature of the EKF estimation method. Additionally,
we present a method for selecting the optimal compartmental
model order based on a Bayesian information criterion, and a
statistical validation method based on residual analysis.

We test our approach using the ICG concentration data
acquired from four Fisher rats carrying adenocarcinoma tumor
cells. Two-, three- and four-compartment models are fitted to
data and pharmacokinetic model parameters and concentra-
tions in different compartments are estimated using the EKF
framework. The Bayesian information criterion suggests that
the two-compartment model provides a sufficient fit for our
data. The estimated model order and the model parameters are
further validated by residual analysis. The model parameters
are used to differentiate between two types of cancerous
tumors. Our study suggests that the permeability rates out of
the vasculature are higher in edematous tumors as compared

to necrotic tumors. Additionally, we observe that in the two-
compartment model, the ICG concentration curve is higher
in the EES compartment in edematous tumors. This suggests
that the ratio of the peak value of the ICG concentrations
in different compartments may be a useful parameter to
differentiate tumors.

The paper is organized as follows: In Section II, we present
the two-, three- and four-compartment models for ICG phar-
macokinetics in tissue. In Section III, we present the state-
space representation of the compartmental models; estimation
of ICG pharmacokinetic parameters and ICG concentrations
in the EKF framework; and an optimal model order selection
criterion. In Section IV, we present the experimental results
obtained from Fischer rat data. Section V summarizes our
results and conclusion. Appendix I includes the derivation
of the likelihood function used in the Bayesian information
criterion.

II. ICG PHARMACOKINETIC MODELING USING NIR
MEASUREMENTS

A. Indocyanine Green

ICG is an optical dye commonly used in retinopathy and
hepatic diagnostics. Given its low toxicity and FDA approval,
it has recently been utilized as a blood pooling agent for the
detection and diagnosis of cancerous tumors by means of NIR
optical methods. The absorption peak of ICG is 805 nm and
the fluorescence peak is at 830 nm. ICG has strong affinity
for blood proteins. In plasma, ICG is near-completely bound,
primarily to albumin. As a result, its in vivo kinetics are similar
to those of a 70 kD molecule, although it has a molecular
weight of about 700 D [11]–[15].

ICG is eliminated from the body primarily through the
bile. Outside of the circulatory system, it is not available for
removal until it returns to the system. The kinetics of this
transition offers a potential means of non-invasively assessing
the leakiness of large molecules from the microvasculature;
this permeability is a characteristic of the poorly developed
vasculature observed in angiogenesis. The increase in local
microvasculature density is also expected to induce increased
perturbation in the optical signal from intercapillary ICG.

There are some differences in the delivery of ICG between
normal and cancerous vasculature. In normal tissue, ICG acts
as a blood flow indicator in tight capillaries of normal vessels.
However in tumors, ICG may act as a diffusible (extravascular)
flow in the leaky capillary of cancer vessels. To investigate
the validity of this hypothesis, one has to employ at least
a two-compartment model composed of plasma and EES.
Additionally, the permeability rate is expected to increase as
the malignancy advances [9], [10]. Fig. 1 (a) and (b) illustrates
the ICG flow for healthy and malignant tissue, respectively.

B. Compartmental Analysis of ICG Pharmacokinetics

Compartmental modeling allows relatively simple and ef-
fective mathematical representation of complex biological re-
sponses due to contrast agents. A region of interest is assumed
to consist of a number of compartments, generally representing
a volume or a group of similar tissues into which the contrast
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Fig. 1. An illustration of the ICG flow (a) in tight capillary of normal vessel,
(b) in permeable capillary of tumor tissue.

Fig. 2. A simple illustration of the capillary extracapillary structure.

agent is distributed. The concentration change in a specific
compartment is modeled as a result of the exchange of contrast
agent between connected compartments. These changes are
modeled by a collection of coupled ODEs; each equation
describing the time change dictated by the biological laws that
govern the concentration exchanges between the interacting
compartments [16]–[19]. In this work, we investigate three
different compartmental models for the ICG kinetics and deter-
mine the optimal model order based on Bayesian information
criteria.

1) The four-compartment model: Fig. 2 illustrates the cap-
illary and extracapillary space relevant to the four compart-
ment model. The four-compartment model includes capillary
region, interstitial fluid region, parenchymal cell region and
intracellular binding site as compartments [20]. The ICG,
injected intravenously into the subject, can pass from the
capillary into the reversible binding site inside the cell through
the interstitial fluid region and the parenchymal cell region
[20]–[22]. Moreover, in advanced tumor stages, the leakiness
around the tumor vessels is expected to increase, resulting in
higher permeability rates during the transportation of ICG into
the compartments. A block diagram of the four-compartment
transport and chemical model of ICG delivery is shown in Fig.
3(a).

Let Cp, Ci, Cpc, Cb denote the ICG concentrations in
plasma, the interstitial fluid region, the parenchymal cell region
and the intracellular binding site, respectively; and let k

(4)
out,

k
(4)
a , k

(4)
b , k

(4)
c , k

(4)
d , k

(4)
e and k

(4)
f be the constants used as

equilibrium coefficients as shown in Fig. 3(a). Then the set of
differential equations representing the ICG transition between
the four compartments is given as follows:

The leakage into and the drainage out of plasma:

dCp(t)
dt

= k
(4)
b Ci(t) − k(4)

a Cp(t) − k
(4)
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Fig. 3. Block diagrams of the (a) four-compartment, (b) three-compartment,
(c) two-compartment models for the ICG pharmacokinetics.

region:

dCi(t)
dt

= k(4)
a Cp(t)−k

(4)
b Ci(t)−k(4)

c Ci(t)+k
(4)
d Cpc(t). (2)

The leakage into and the drainage out of the parenchymal
cell:

dCpc(t)
dt

= k(4)
c Ci(t) − k

(4)
d Cpc(t) − k(4)

e Cpc(t) + k
(4)
f Cb(t).

(3)
The leakage into and the drainage out of the intracellular

binding site:

dCb(t)
dt

= k(4)
e Cpc(t) − k

(4)
f Cb(t). (4)

Physiologically, the equilibrium constants are defined by the
permeability surface area products given as PSρ, where P is
the capillary permeability constant, S is the capillary surface
area, and ρ is the tissue density. k

(4)
out is proportional to the flow

rate into and out of the capillary and k
(4)
a , k

(4)
b , k

(4)
c , k

(4)
d ,

k
(4)
e , and k

(4)
f represent intra-tissue physiologic effects during

ICG delivery from the capillary to the binding site. Note that
the superscript denotes the order of the compartmental model.

The actual bulk ICG concentration in the tissue measured
by NIR spectroscopy, m(t), is a linear combination of the ICG
concentrations in the four different compartments.

m(t) = v(4)
p Cp(t) + v

(4)
i Ci(t) + v(4)

pc Cpc(t) + v
(4)
b Cb(t), (5)

where v
(4)
p , v

(4)
i , v

(4)
pc , v

(4)
b , are volume fractions of plasma,

the interstitial fluid region, the parenchymal cell region and
the intracellular binding site, respectively.

2) The three-compartment model: In this model, the
parenchymal cell and intracellular binding site compartments
are combined to form a single compartment called parenchy-
mal cell. This amounts to the assumptions that the transport
of ICG into the intracellular binding site is negligible as
compared to the other compartments, and therefore omitted
from the model. A block diagram of the three-compartment
transport and chemical model of ICG delivery is shown in Fig.
3(b). The three-compartment transport equations are given as
follows:
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The leakage into and the drainage out of plasma:

dCp(t)
dt

= k
(3)
b Ci(t) − k(3)

a Cp(t) − k
(3)
outCp(t) (6)

The leakage into and the drainage out of the interstitial
space:

dCi(t)
dt

= k(3)
a Cp(t)−k

(3)
b Ci(t)−k(3)

c Ci(t)+k
(3)
d Cpc(t) (7)

The leakage into and the drainage out of the parenchymal
cell:

dCpc(t)
dt

= k(3)
c Ci(t) − k

(3)
d Cpc(t) (8)

The total ICG concentration measured by NIR:

m(t) = v(3)
p Cp(t) + v

(3)
i Ci(t) + v(3)

pc Cpc(t) (9)

where v
(3)
p , v

(3)
i , v

(3)
pc and Cp, Ci, Cpc are as defined in the

four-compartment model.
3) The two-compartment model: In the two-compartment

model, the tumor region is assumed to be composed of two
compartments, namely the plasma and the extra-cellular extra-
vascular space (EES) [9], [23], [24]. The EES is defined as
the region that lies outside of both the vascular region and
the tumor cells. The transport of the ICG to the third and
fourth compartments are assumed to be negligible. Therefore
the last two compartments in the four compartment model is
omitted. We consider transcapillary leakage to occur only at
the tumor site. We also assume that a small perturbation of the
global plasma concentration does not affect the bulk removal.
Fig. 3(c) shows the block diagram of the two-compartment
model for the ICG kinetics. Let Cp and Ce denote the ICG
concentrations in plasma and the EES, respectively. Then the
two-compartment ICG chemical transport equations are given
as follows:

The leakage into and the drainage out of plasma:

dCp(t)
dt

= k
(2)
b Ce(t) − k(2)

a Cp(t) − k
(2)
outCp(t). (10)

The leakage into and the drainage out of the EES:

dCe(t)
dt

= k(2)
a Cp(t) − k

(2)
b Ce(t). (11)

The parameters k
(2)
a and k

(2)
b govern the leakage into and

the drainage out of the EES, respectively. The parameter k
(2)
out

describes the ICG elimination from the body through kidneys
and liver.

Actual bulk ICG concentration in the tissue measured by
NIR is a linear combination of plasma and EES ICG concen-
trations given by:

m(t) = v(2)
p Cp(t) + v(2)

e Ce(t), (12)

where the parameters v
(2)
p and v

(2)
e denote the plasma and EES

volume fractions, respectively.

III. EXTENDED KALMAN FILTERING FOR THE ICG
PHARMACOKINETICS

For the rest of our discussion, we shall use the explicit form
of the two-compartment model as a running example to clarify
our notation. Note that for the rest of the paper, all matrices
and vectors will be in boldface and scalar quantities will be
in non-boldface notation.

A. State-space Representation of the ICG Pharmacokinetics

Coupled differential equations resulting from the two-
compartment modeling of the ICG pharmacokinetics can be
expressed in state-space representation as follows:

[
dCe(t)
dCp(t)

]
=

[
−k

(2)
b k

(2)
a

k
(2)
b −(k(2)

a + k
(2)
out)

] [
Ce(t)
Cp(t)

]
+dB(t),

(13)

m(t) =
[

v
(2)
e v

(2)
2

] [
Ce(t)
Cp(t)

]
+ η(t)

where dB(t) is the Wiener process increment, dB(t) = ω(t)dt.
Here, ω(t)and η(t) can be thought of as uncorrelated zero
mean Gaussian processes with covariance matrix Q, and
variance σ2, respectively.

In vector-matrix notation, the continuous time state-space
representation for the n−compartment model is given by:

dC(t) = κ(αn)C(t)dt + dB(t),

m(t) = V(αn)C(t) + η(t). (14)

In (14), C(t) denotes the concentration vector; κ(αn) is the
system matrix, V(αn) is the measurement matrix and αn is
the parameter vector whose elements are the pharmacokinetic
constants and the volume fractions for the n−compartment
model. For example the parameter vector α2 for the two-
compartment model is given by

α2 = [k(2)
a k

(2)
b k

(2)
out v(2)

e v(2)
p ]. (15)

The ICG measurements in (14) are collected at discrete time
instances, t = kT , k = 0, 1, ..., where T is the sampling
period. Therefore, the continuous model described in (14)
has to be discretized. To simplify our notation, we shall use
C(k) = C(kT ) and m(k) = m(kT ). The discrete state space
system and the measurement models are given as follows:

C(k + 1) = κd(αn)C(k) + ω(k)

m(k) = Vd(αn)C(k) + η(k), (16)

where κd(αn) = eκ(αn)T is the discrete-time system matrix
and Vd(αn) = V (αn) is the discrete-time measurement
matrix. ω(k) and η(k) are zero mean Gaussian white noise
processes with covariance matrix Qd and variance σ2

d, respec-
tively. Discretization of state-space models can be found in
various system theory books, see for example [25].

An explicit form of the discrete state space model for the
two-compartment case is given as follows:

[
Ce(k + 1)
Cp(k + 1)

]
=

[
τ11 τ12

τ21 τ22

] [
Ce(k)
Cp(k)

]
+ ω(k) (17)

m(k) =
[

v
(2)
e v

(2)
p

] [
Ce(k)
Cp(k)

]
+ η(k),

where τij is the ith row and jth column entry of the system
matrix κd(α2). Note that the matrix entry τij is an exponential
function of the parameters k

(2)
a , k

(2)
b and k

(2)
out.
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To simplify the estimation process, we shall first estimate
the matrix entries, τij , of the discrete-time system matrix
κd(αn) and then compute the pharmacokinetic parameters for
each compartmental model.

B. Modeling of ICG Pharmacokinetic Parameters and Con-
centrations in an Extended Kalman Filter Framework

The Kalman filter provides a recursive method to estimate
the states in state-space models, in which the states are driven
by noise, and the measurements are collected in the presence
of measurement noise [26]–[28]. In the case of non-linear
state-space models, the extended Kalman filter linearizes the
model around the current state estimate, and then applies the
KF to the resulting linear model. The EKF framework is also
utilized for the joint estimation of the unknown system and/or
measurement parameters and states. In a linear state-space
model when both states and system parameters are unknown,
the linear state-space model can be regarded as a non-linear
model in which the linear system parameters and states are
combined to form the new states of the non-linear model.
This system is then linearized and solved for the unknown
states using the KF estimator. We consider a linear Taylor
approximation of the non-linear model. The details of the
linearization procedure and a general discussion on EKF can
be found in [27], [29]–[31].

In our problem, the objective is to simultaneously estimate
the states, i.e., the ICG concentrations in each compartment,
and the system and measurement parameters, i.e., the pharma-
cokinetic parameters and the volume fractions. Let θn denote
the discrete-time parameter vector of the pharmacokinetic rates
and volume fractions. For example, in the two-compartment
model, θ2 is given by

θ2 =
[

τ11 τ12 τ21 τ22 v
(2)
e v

(2)
p

]T

. (18)

Note that the parameter vector θn, derived from the state
space model (17), is time independent. In order to estimate
θn within the EKF framework, the following dynamic model
is introduced:

θn(k + 1) = θn(k) + ς(k), (19)

where ς(k) is a zero mean white noise process with covariance
matrix Sd [27]. Here, θn(k) can be thought of as the kth

update of the parameter rather than its value at time k.
We append the parameter vector θn(k + 1) to the ICG

concentration vector C(k+1) to form the new non-linear state-
space model given by

[
C(k + 1)
θn(k + 1)

]
=

[
K(θn)C(k)

θn(k)

]
+

[
ω(k)
ς(k)

]
(20)

m(k) =
[

Vd(θn) 0
] [

C(k)
θn(k)

]
+ η(k),

where K(θn) = κd(αn).

C. EKF Joint Estimation of ICG Concentrations, Pharmacoki-
netic Parameters, and Volume Fractions

In this section we will summarize the major steps of the
EKF estimator for the joint estimation of ICG concentrations
and compartmental model parameters.

Let the subscript k|t denote the estimate at time k given
all the measurements up to time t. Then the 1-step ahead
prediction of the ICG concentrations and the compartmental
model parameters are given as follows:[

Ĉ
θ̂n

]
k|k−1

=
[

K(θ̂n)Ĉ
θ̂n

]
k−1|k−1

. (21)

For the two-compartment model, (21) becomes⎡
⎣ Ĉe

Ĉp

θ̂2

⎤
⎦

k|k−1

=

⎡
⎣ ˆτ11Ĉe + ˆτ12Ĉp

ˆτ21Ĉe + ˆτ22Ĉp

θ̂2

⎤
⎦

k−1|k−1

. (22)

The error covariance matrix, Pk|k−1, of the 1-step ahead
predictions is given as follows:

Pk|k−1 = Jk−1Pk−1|k−1JT
k−1 +

[
Qd 0
0 Sd

]
, (23)

where Jk is the Jacobian of the non-linear EKF system
function at time k. Explicitly, it is given by:

Jk =

[
K(θ̂n) ∂

∂θn
[K(θ̂n)Ĉ]

0 I

]
k|k

, (24)

where 0 and I denote zero and identity matrices, respectively.
The Jacobian matrix for the two-compartment model becomes

Jk =

⎡
⎣

(
ˆτ11 ˆτ12

ˆτ21 ˆτ22

) (
Ĉe Ĉp 0 0 0 0
0 0 Ĉe Ĉp 0 0

)
0(6×2) I(6×6)

⎤
⎦

k|k

,

(25)
where 0(6×2) is a 6 × 2 zero matrix, and I(6×6) is a 6 × 6
identity matrix.

The 1-step ahead predictions are updated to the kth-step
estimates by means of the Kalman gain matrix which is given
by

Gk = Pk|k−1Λ
T [ΛPk|k−1Λ

T + σ2
k]−1, (26)

where Λ is the following vector[
Vd(θ̂) ∂

∂θ
[Vd(θ̂)Ĉ]

]
k|k−1

. (27)

For the two-compartment model the Λ vector becomes[
v̂e

(2) v̂p
(2) 0 0 0 0 Ĉe Ĉp

]
k|k−1

. (28)

The kth-step estimate of the concentrations and the param-
eters are obtained recursively using

[
Ĉ
θ̂

]
k|k
=

[
Ĉ
θ̂

]
k|k−1

+ Gk(m(k) − [Vd(θ̂)Ĉ]k|k−1). (29)
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For the two-compartment case, the kth-step estimate of the
concentrations and the parameters is

⎡
⎣ Ĉe

Ĉp

θ̂2

⎤
⎦

k|k

=

⎡
⎣ Ĉe

Ĉp

θ̂2

⎤
⎦

k|k−1

+Gk[m(k) − (v̂e
(2)Ĉe − v̂p

(2)Ĉp)k|k−1] (30)

The error covariance matrix, Pk|k, of the kth-step estimates
is updated as

Pk|k = [I − GkΛ]Pk|k−1, (31)

where I is the identity matrix.
In general, the convergence of EKF depends on proper

choices of the initial values of the parameters, θ, initial values
of the concentrations, C, and proper selection of the noise
covariance matrices Sd, Qd, and the variance σ2

d [33]. The
parameter σ2

d controls the convergence of the Kalman gain
Gk. To ensure stability, we set σ2

d much higher than the
ΛPk|k−1Λ

T term in (26). However, setting very high values
of σ2

d leads to slow convergence of the Kalman gain Gk. The
main cause of divergence in EKF can be tracked down to
the fact that a change in the parameter vector has no direct
effect on the Kalman gain; in other words, there is no coupling
term between the Kalman gain and the parameter vector [34].
Based on this observation, we improved the convergence of
the EKF by modifying the term J(1, 2) = ∂

∂θ
K(θ̂)Ĉ in (24),

as described in [34].
It has been shown that if Qd, Sd and σ2

d are selected less than
the actual values, it leads to overconfidence in the accuracy of
the estimates of the error covariance matrix [32]. Therefore,
we regarded these matrices as tuning parameters and not as
the estimates of the true covariance matrices, as suggested in
[32].

Theoretically, the state estimates can be initialized at the
expected value of the ICG concentrations, i.e. E[C(0)]. One
approach to the initialization of the parameters is to utilize
the state-space presentation given in (16). Since E(m(0)) =
Vd(θn(0))E[C(0)], m(0)−Vd(θn(0))E[C(0)] is a zero mean
random variable. If we express the variance of the mea-
surement m(0) in terms of the variance of C(0) using the
measurement model in (16), and solve for θn, we get the
estimate θ̂n(0) as the most appropriate value for initialization.
The details of the selection of the initial values for the
parameters can be found in [27].

The initialization of the error covariance matrix is also
important for the performance of the EKF. The error co-
variance matrix is the matrix which provides information
about the error bounds for the estimates. Theoretically, the
initial error covariance matrix is a diagonal matrix where the
diagonal entries are the initial estimates of the variance of
concentrations and pharmacokinetic parameters, i.e.

P0|0 =
[

Cov(C(0)) 0
0 Sd

]
. (32)

In depth discussion on the convergence properties of the
EKF can be found in [27], [32]–[34].

D. Compartmental Model Order Selection

We adopted the Bayesian information criterion (BIC) for the
optimal model order selection. BIC is a well known informa-
tion theoretic criterion, in which the optimal model order is
selected by minimizing a cost function to avoid overfitting.
The cost function depends on the number of observations,
the number of unknown parameters to be estimated and the
likelihood function. A detailed discussion of the BIC can be
found in [35]–[37].

In order to calculate the BIC for different compartmental
models, we first derived a likelihood function for the extended
Kalman filter. The derivation is based on maximum likeli-
hood estimation of the parameters in the Kalman filtering
framework given as in [38], [39]. We then modified this
likelihood function for the extended Kalman filter estimator
for the joint estimation of compartmental model parameters
and concentrations. The details of the derivation is provided
in the Appendix I.

IV. EXPERIMENTAL RESULTS - ICG PHARMACOKINETICS

IN FISCHER RAT DATA

We applied the proposed EKF framework to the pharma-
cokinetic analysis of ICG data obtained from four Fischer rats
with adenocarcinoma. R3230ac adenocarcinoma cells were
injected below the skin into four Fischer rats 3 weeks prior to
measurements. The tumor size for the rats varies in diameter
from 5 to 30 mm. Measurements were conducted with a
combined frequency-domain and steady-state optical technique
that facilitates rapid measurement of tissue absorption. Fre-
quency domain measurements were obtained at 674, 800,
849, 898, and 915 nm, modulated at frequencies from 50 to
601 MHz, sweeping a total of 233 frequencies. Tumors were
also imaged by use of contrast-enhanced magnetic resonance
imaging and coregistered with the location of the optical probe.
In addition, a broadband continuous wave reflectance measure-
ment spanning the range 650-1000 nm was performed with
a spectrometer. With the reduced-scattering coefficient spec-
trum and diffusion theory, the broadband reflectance spectra
were converted to absorption coefficient spectra. The absolute
concentration of ICG, together with oxy-hemoglobin, deoxy-
hemoglobin, and water were calculated by using multiple
linear regressions of ICG extinction coefficient spectra to the
calculated absorption spectrum at approximately every second
for ten minutes. A detailed discussion of the measurement
process and apparatus can be found in [40], [41].

Fig. 4 presents the ICG concentrations (µM ) from four
different rats. Tumors in Rat 1 and 2 are classified as
necrotic because of their low tissue oxy-hemoglobin, low total
hemoglobin, and low gadolinium-diethylene-triamine penta-
acetic acid (Gd-DTPA) enhancement levels. Tumors in Rat
3 and 4 are classified as edematous due to their high water
content [42]. It can be observed from Fig. 4 that the necrotic
cases display low peak ICG concentration values and slowly
rising slopes unlike the edematous cases with high peak values
and sharp rising slopes.

We estimated the pharmacokinetic rates for the four-, three-
and two-compartment models. Each data set has 504 mea-
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Fig. 4. ICG concentrations measured in tissue for four different rats.

surements. The reported parameter estimates are the asymp-
totic values obtained when the extended Kalman filter has
converged. In other words, the predicted parameter values
corresponding to the final estimate, i.e., k2

a = k2
a, (k=504).The

results are given in Tables I, II, and III, respectively. The
error bounds on the estimates are derived from the covariance
matrix of the EKF estimator. The estimated pharmacokinetic
rates for all compartmental models indicate that the exchange
rates between the capillary and the adjacent compartment (ISS
or EES), kn

a , kn
b , n = 2, 3, 4, are significantly different for

the necrotic and edematous tissue. We observe that for the
four- and three-compartment models, the estimated exchange
rates between the ISS and parenchymal cell compartments,
kn

c , kn
d , n = 3, 4, are comparable. Similarly, the estimated rate

of drainage out of the plasma, kn
out, n = 2, 3, 4, are consistent

for all models.
Based on the model parameter estimates, we computed the

BIC values for each rat data to reveal overfitting. The BIC
values and the number of unknown parameters for each rat
data are tabulated in Table IV. The BIC suggests that the two-
compartment model is sufficient for all four measurement sets.

We further analyze the goodness-of-fit of the compartmental
models by means of residual analysis. The basic idea of
residual analysis is to compare the actual measurements m(k)
with their 1-step ahead predictions, m̂(k)k|k−1, based on
the estimated parameters. A detailed discussion on residual
analysis can be found in [26], [43]. The mean and variance of
the residual error for the four-, three- and two-compartmental
models are tabulated in Table 5. To normalize the error with
respect to the magnitude of the actual measurements, we
calculated the signal-to-noise ratio (SNR) using the median
value of the measurements and the mean of the residual errors
for each rat data. As seen from the results in Table 6, the
SNR values are higher for the two-compartment case for all
data sets. These results show that the two-compartment model
provides the minimum bias and the best statistical efficiency.
Fig. 5 shows the measured total concentration data and its 1-
step ahead prediction based on the two-compartment model
for each rat data. Clearly, there is a good agreement between
the actual and the predicted values.

Based on the BIC and residual analysis, we conclude that
the two-compartment model provides the best statistical fit for
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Fig. 5. ICG concentration measurement data and 1-step prediction of the
measurements for four different rats.

the rat data and investigate the estimated model parameters in
more detail.

In the two-compartment model, the rate of leakage into the
EES from the capillary, k

(2)
a , range from 0.0247 to 0.0840

sec−1 and the rate of drainage out of the EES and into
the capillary, k

(2)
b , range from 0.0106 to 0.0777 sec−1. Note

that the permeability rates for the necrotic cases are lower
than the ones observed for the edematous cases. Additionally,
the estimated values for the pharmacokinetic rates are much
higher than the normal tissue values due to the increased
leakiness of the blood vessels around the tumor region [9],
[44]. The estimated plasma volume fractions agrees with the
values reported earlier [9], and the values presented in the
literature [45], [46]. These results confirm that v

(2)
p can be

large in tumors and that its magnitude varies with respect to
the stage of the tumor [24]. The estimated values of the EES
volume fraction, v

(2)
e , range from 0.218 to 0.53, in agreement

with the 0.2 to 0.5 range reported earlier [23]. Note that these
results are valid only for the ICG pharmacokinetics in tumor
cells R3230ac, adenocarcinoma and may not be generalized
for other types of contrast agents or tumor types.

Fig. 6 shows the estimated ICG concentrations in plasma
and the EES compartments for the two-compartment model
for Rats 1 to 4. Note that the concentration curves in Fig.
5 and Fig. 6 follow a similar time course since the curves

TABLE IV

TEST FOR MODEL ORDER SELECTION FOR THREE DIFFERENT

COMPARTMENTAL MODELS FOR FOUR DIFFERENT DATA SETS

Rat1 Rat2 Rat3 Rat4
Model p φBIC(p) φBIC(p) φBIC(p) φBIC(p)

Two-comp. Model 7 -178.24 -198.36 -202.81 -172.09

Three-comp. Model 11 -71.62 -83.85 -92.18 -63.91

Four-comp. Model 15 -39.72 -45.12 -56.34 -30.02
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TABLE I

FOUR-COMPARTMENT MODEL:ESTIMATED PHARMACOKINETIC PARAMETERS USING EKF ALGORITHM

k
(4)
a k

(4)
b

k
(4)
c k

(4)
d

k
(4)
e k

(4)
f

k
(4)
out

(sec−110−2) (sec−110−2) (sec−110−2) (sec−110−2) (sec−110−2) (sec−110−2) (sec−110−3)
Rat 1 (Necrotic) 1.45±0.013 1.22±0.019 1.86±0.017 2.02±0.026 2.74±0.041 2.41±0.051 4.05±0.059

Rat 2 (Necrotic) 3.48±0.048 2.77±0.034 4.28±0.048 4.33±0.040 2.98±0.048 3.03±0.061 4.76±0.062

Rat 3 (Edematous) 4.94±0.052 5.16±0.067 4.22±0.052 4.13±0.067 4.14±0.070 4.27±0.078 5.39±0.085

Rat 4 (Edematous) 5.25±0.053 5.31±0.063 5.07±0.068 5.22±0.063 4.43±0.075 4.03±0.072 3.85±0.056

TABLE II

THREE-COMPARTMENT MODEL:ESTIMATED PHARMACOKINETIC PARAMETERS USING EKF ALGORITHM

k
(3)
a k

(3)
b

k
(3)
c k

(3)
d

k
(3)
out

(sec−110−2) (sec−110−2) (sec−110−2) (sec−110−2) (sec−110−3)
Rat 1 (Necrotic) 1.93±0.061 1.28±0.049 1.82±0.032 2.02±0.041 3.89±0.052

Rat 2 (Necrotic) 4.41±0.074 2.48±0.067 4.87±0.066 5.03±0.057 5.45±0.071

Rat 3 (Edematous) 4.71±0.085 3.88±0.077 4.95±0.059 4.68±0.050 4.42±0.040

Rat 4 (Edematous) 5.29±0.091 6.48±0.096 4.48±0.062 4.20±0.048 5.01±0.055

TABLE III

TWO-COMPARTMENT MODEL:ESTIMATED PHARMACOKINETIC PARAMETERS AND VOLUME FRACTIONS USING EKF ALGORITHM

k
(2)
a k

(2)
b

k
(2)
out v

(2)
e v

(2)
p

(sec−110−2) (sec−110−2) (sec−110−3) (10−2) (10−2)
Rat 1 (Necrotic) 2.47±0.043 1.06±0.052 4.61±0.073 21.8±1.92 1.41±0.053

Rat 2 (Necrotic) 3.54±0.082 2.98±0.086 4.83±0.092 25.4±3.49 2.42±0.088

Rat 3 (Edematous) 6.90±0.101 4.93±0.072 3.95±0.048 30.4±2.81 4.84±0.120

Rat 4 (Edematous) 8.40±0.114 7.77±0.091 4.02±0.068 53.0±4.73 7.03±0.321

TABLE V

THE MEAN AND VARIANCE OF THE ERROR BETWEEN THE ESTIMATES AND

MEASUREMENTS

Four-compartment Three-compartment Two-compartment
Mean Variance Mean Variance Mean Variance

Rat1 0.0987 7.6e-004 0.0605 4.7e-004 0.0072 2.5e-005

Rat2 0.1043 9.1e-004 0.0767 3.0e-004 0.0057 4.8e-005

Rat3 0.1204 8.9e-004 0.0883 4.9e-004 0.0041 3.0e-005

Rat4 0.0904 5.9e-004 0.0589 6.8e-004 0.0076 8.6e-005

TABLE VI

SNR VALUES FOR THREE DIFFERENT COMPARTMENTAL MODELS FOR

FOUR DIFFERENT DATA SETS

Rat1 Rat2 Rat3 Rat4
Model SNR (dB) SNR SNR SNR

Two-compartment Model 73.2 68.1 108.3 107.9

Three-compartment Model 30.7 36.1 23.9 47.0

Four-compartment Model 20.8 29.9 27.7 18.4

in Fig. 6 is a linear combination of the curves in Fig. 5.
Note that initial estimates of concentrations are noisy due to
the limited data used in the recursive EKF estimation. This
can be improved by Kalman backward smoothing [47]. The
peak values of the plasma concentration, Cp, range from 2.72
µM to 4.28 µM . The absolute value of the concentrations
may not be very useful. However, concentration of ICG in a
compartment relative to the one in another compartment may

provide useful information. We consider the ratio of the peak
concentrations in plasma and the EES as a potential parameter
to discriminate different tumors. The peak Cp/Ce ratio for
Rats 1 to 4 is 0.551, 0.593, 0.787, 1.151, respectively. This
ratio is higher in edematous cases consistent with the fact that
ICG-albumin leaks more into the EES in edematous tumors.
Additionally, the ICG concentration in plasma decays faster
than the ICG concentration in the EES due to its elimination
through the liver and kidneys.

V. CONCLUSION

In this paper we present three different compartmental
models, an extended Kalman filtering framework for the
modeling, and estimation of ICG pharmacokinetics in can-
cerous tumors based on NIR measurements. Additionally,
we introduce an information theoretic criterion and residual
analysis for model selection and statistical validation. The
proposed compartmental models are fit to data obtained from
Fischer rats with adenocarcinoma cells. The pharmacokinetic
rates and volume fractions are estimated for all models. The
estimated rates for all compartmental models indicate that
the exchange rates between the capillary and the adjacent
compartment (ISS or EES) are significantly larger for the
edematous tissue as compared to the necrotic cases. Based
on the BIC and residual analysis, we conclude that the two-
compartment model provides the best statistical fit for the
rat data and ICG pharmacokinetics. Parameters of this model
indicate that the permeability rates are higher for edematous
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Fig. 6. ICG concentrations in plasma, Cp(t) and EES, Ce(t), for four
different rats. (a) Rat1, (b) Rat2, (c) Rat3, and (d) Rat4.

cases as compared to the necrotic tumors. Additionally, we
estimated the ICG concentrations in different compartments.
The concentrations in different compartments may provide
additional parameters for tissue characterization.

While our study indicates that the two-compartment model
provides the best fit for the ICG pharmacokinetics, the three- or
four-compartment models may be advantageous for modeling
the pharmacokinetics of functionalized optical contrast agents
that actively accumulate or activate in diseased tissue [48]–
[50]. In the near future, we plan to analyze the pharmacoki-
netics of optical agents within the framework of EKF using
data sets collected from animals and human subjects.
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APPENDIX I

The cost function for the BIC is given by

φBIC(p) = p ln N − 2 ln L(θp,m(1), ......,m(N)), (33)

where p is the dimension of θp, which is related to the number
of compartments in the model, N is the data length, and
L(θ,m(1),m(2), ......,m(N)) is the likelihood function. The
likelihood function for the EKF is given by

L(θ,m(1), ......,m(N)) = −1
2

N∑
k=1

ln[det(Hk)]

−1
2

N∑
k=1

AT
k H−1

k Ak, (34)

where the matrix H is defined as:

Hk = ΛPk|k−1Λ
T + σ2

k, (35)

and σ2
k, Λ, and Pk|k−1 are as defined in Section III.C. The

vector A is defined as:

Ak = m(k) − [Vd(θ̂)Ĉ]k|k−1, (36)

where m(k) is the ICG concentration data collected from
Fisher rats at time k, and [Vd(θ̂)Ĉ]k|k−1 is the 1-step ahead
estimate of the volume fractions and concentrations. The
explicit form of the likelihood function for BIC calculation
is given by

L(θ,m(1), ......,m(N)) = −1
2

N∑
k=1

ln[det(ΛPk|k−1Λ
T + σ2

k)]

−1
2

N∑
k=1

[m(k) − [Vd(θ̂)Ĉ]k|k−1]T [ΛPk|k−1Λ
T + σ2

k]−1

.[m(k) − [Vd(θ̂)Ĉ]k|k−1]. (37)

where all the parameters and matrices are as defined in Section
III.C.
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ABSTRACT

In this work, we present spatially resolved pharmacokinetic rate images of indocyanine green (ICG) obtained
from three breast cancer patients using near infrared imaging methods. We used a two-compartment model,
namely, plasma and extracellular extravascular (EES), to model ICG kinetics around the tumor region. We
introduced extended Kalman filtering (EKF) framework to estimate the ICG pharmacokinetic rate images. The
EKF framework allows simultaneous estimation of pharmacokinetic rates and the ICG concentrations in each
compartment. Based on the pharmacokinetic rate images, we observed that the rates from inside and outside
the tumor region are statistically different with a p-value of 0.0001 for each patient. Additionally, we observed
that the ICG concentrations in plasma and the EES compartments are higher around the tumors agreeing with
the hypothesis that ICG may act as a diffusible extravascular flow in leaky capillary of cancer vessels. Our study
shows that spatially resolved pharmacokinetic rate images can be potentially useful for breast cancer screening
and diagnosis.

Keywords: extended Kalman filter, indocyanine green, pharmacokinetic analysis, breast cancer.

1. INTRODUCTION

Near Infrared (NIR) optical imaging has recently emerged as a potential diagnostic tool for breast cancer. NIR
imaging has several advantages over existing imaging modalities. It is easy to use, minimally invasive, relatively
inexpensive and can be made portable. More importantly, in conjunction with molecular imaging probes, NIR
imaging techniques can provide cellular, molecular level information, which can be used for cancer imaging. In
particular, dynamic tomographic imaging methods can produce absorption images which can be used to derive
kinetics of molecular probes. The kinetic rates can then be used as potential detection and diagnosis tools.

Presently, ICG is the only FDA approved fluorescent agent for human use. It is hypothesized that ICG
may act as a blood flow indicator in tight capillaries of normal vessels and as a diffusible (extravascular) flow
in leaky capillary of cancer vessels.1, 4 A number of studies using compartmental modeling were reported
to show the feasibility of using ICG pharmacokinetics in tumor characterization.1–5 Parameters related to
capillary permeability were used as malignancy indicators. Gurfinkel et. al.3 presented in vivo fluorescent, NIR
reflectance images of ICG to discriminate spontaneous canine adenocarcinoma from normal mammary tissue
using a two compartmental model. It was claimed that the model parameters show no difference in the ICG
uptake rates between normal and diseased tissue. Cuccia et al.4 presented a study of the dynamics of ICG in
an adenocarcinoma rat tumor model. A two-compartment model describing ICG dynamics was used to quantify
physiologic parameters related to capillary permeability. It was shown that different tumor types have different
capillary permeability rates. Intes et. al.5 presented the uptake of ICG by breast tumors using a continuous wave
diffuse optical tomography apparatus. A two-compartment model was used to analyze the pharmacokinetics of
ICG. It was shown that the malignant cases exhibit slower rate constants (uptake and outflow) compared to
healthy tissue.

The studies above demonstrate the feasibility of the ICG pharmacokinetics in tumor characterization. How-
ever, estimation of pharmacokinetic parameters is a challenging problem, because it is a highly non-linear estima-
tion problem with sparse data available in clinical setting. Furthermore, parameter values show variation from
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one subject to another. To address these issues, we recently introduced a systematic and robust approach to
model, estimate and analyze the ICG pharmacokinetics based on extended Kalman filtering framework.1, 2 We
introduced Bayesian Information Criteria to choose best statistical model fit. EKF based approach can be also
utilized to estimate time-dependent pharmacokinetic rates. We tested three different compartmental models for
ICG pharmacokinetics using NIR data collected from Fischer rats with cancerous tumors. Our study showed that
the permeability rates out of the vasculature are higher in edematous tumors as compared to necrotic tumors.

In this paper, our objective is to obtain spatially resolved pharmacokinetic rate images of ICG, using NIR
data acquired from three breast cancer patients. We first develop a set of temporally resolved 2-D ICG con-
centration images based on linearized diffusion equation. We then estimate the ICG pharmacokinetic rates and
the concentrations in each compartment for each pixel based on the EKF framework for the two-compartment
model. Reconstructed 2-D pharmacokinetic rate images of the three patient show that the rates from inside and
outside the tumor region are statistically different with a p-value of 0.0001. Additionally, the ICG concentrations
in plasma and the EES compartments are higher around the tumor agreeing with the hypothesis that around
the tumor region ICG may act as a diffusible extravascular flow in leaky capillary of cancer vessels.

The rest of the paper is organized as follows: In Section II, we present the reconstruction of differential
absorption and ICG concentration images. In Section III, we present the two-compartment model for ICG.
In Section IV, we present the EKF based estimation of ICG pharmacokinetic parameters. In Section V, we
present the clinical results obtained from breast cancer patients. Finally, Section VI summarizes our results and
conclusion.

2. DIFFUSE OPTICAL TOMOGRAPHY (DOT) USING ICG

2.1. Reconstruction of Bulk ICG Concentration Images

The propagation of light in soft tissue is modeled by diffusion approximation.6 In the forward model, the
analytical solutions of the heterogonous diffusion equation given in5 is derived using first order Rytov approx-
imation. The sample volume is divided into a set of voxels and the measurements are related to the relative
absorption coefficients of each voxel by a system of linear equations. The shape of the breast was approximated
as a cylinder and the Kirchhoff approximation7, 8 for diffuse waves was used to model the interaction of light
with boundaries. In order to account for the biological noise, the forward model was implemented with coupling
coefficient technique.9 The inverse problem was addressed by using singular value decomposition of the Moore-
Penrose generalized system. Tikhinov regularization was used to stabilize the inversion procedure. The L-curve
method was applied to an experimental model reconstruction and the best regularization parameter was derived
using a curvature function which was employed in.10 A detailed discussion of the forward and inverse models
used for the reconstruction of differential absorption coefficients can be found in.5

We used the linear relationship between the differential absorption coefficients and concentrations given by
the following equation to reconstruct a set of temporally resolved 2-D ICG concentration images.11

∆µa = e C ln10 = 2.303 e C (1)

where ∆µa denotes the differential absorption coefficient, and C denotes the concentration of ICG, and e is the
extinction coefficient of ICG at wavelength 805nm. Using the linear relationship above, we get 2-D images of
ICG concentrations in tissue from differential absorption images reconstructed at different time instants on a
pixel by pixel basis. In the following Sections, we will discuss the two-compartment model, and the estimation
of pharmacokinetic rates.

3. ICG PHARMACOKINETICS AND THE TWO-COMPARTMENT MODELING

3.1. Compartmental Analysis of ICG Pharmacokinetics

In this paper, we assume that the tumor region is composed of two compartments; namely plasma and the EES.1, 4

Figure 1 shows the two-compartment model for ICG kinetics. Cp and Ce represent the ICG concentrations in
plasma and the EES, respectively. The parameters kin and kout govern the leakage into and the drainage out
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Figure 1. Block diagram of the two-compartment model for ICG pharmacokinetics.

of the EES. The parameter kelm describes the ICG elimination from the body through kidneys and livers. The
parameters vp and ve are plasma and the EES volume fractions, respectively.

The leakage into and the drainage out of the EES is given by:

dCe(t)
dt

= −koutCe(t) + kinCp(t). (2)

The leakage into and the drainage out of plasma is given by:

dCp(t)
dt

= −(kin + kelm)Cp(t) + koutCe(t). (3)

The parameters kin, kout, and kelm have a unit of sec−1. They are defined as the permeability surface area
products given by PSρ, where P is the capillary permeability constant, S is the capillary surface area, and ρ is
the tissue density. We consider transcapillary leakage to occur only at the tumor site.

Actual bulk ICG concentration in the tissue measured by NIR spectroscopy is a linear combination of plasma
and the EES ICG concentrations:

m(t) = vpCp(t) + veCe(t), (4)

where vp, ve, Ce, and Cp are as defined above, and m(t) denotes the bulk ICG concentration.

Here, we consider transcapillary leakage to occur only at the tumor site. We also assume that a small
perturbation of the global plasma concentration does not affect the bulk removal.

4. EXTENDED KALMAN FILTERING FOR THE ESTIMATION OF ICG
PHARMACOKINETICS

Coupled differential equations resulting from the two-compartment model of the ICG pharmacokinetics can be
expressed in state-space representation as follows:

[
Ċe(t)
Ċp(t)

]
=

[ −kout kin

kout −(kin + kelm)

] [
Ce(t)
Cp(t)

]
+ ω(t), (5)

m(t) =
[

ve vp

] [
Ce(t)
Cp(t)

]
+ η(t)

where ω(t) and η(t) are uncorrelated zero mean Gaussian processes with covariance matrix Q, and variance σ2,
respectively.

In matrix-vector notation, the state-space representation is given by:

dC(t) = K(α)C(t)dt + ω(t)dt, (6)



m(t) = V(α)C(t) + η(t).

where C(t) denotes the concentration vector with elements Ce(t), and Cp(t); K(α) is the 2 × 2 system matrix,
V(α) is the 1 × 2 measurement matrix as defined in equation (5) and α is the parameter vector given by

α = [kout kin kelm ve vp]. (7)

The ICG measurements in equation (6) are collected at discrete time instances, t = kT , k = 0, 1, ..., where T
is the sampling period. Therefore, the continuous model given in Equation (6) has to be discretized. To simplify
our notation, we shall use C(k) = C(kT ) and m(k) = m(kT ). The corresponding discrete state-space model is
given by:

C(k + 1) = Kd(α)C(k) + ω(k) (8)

m(k) = Vd(α)C(k) + η(k),

where Kd(α) = eK(α) is the discrete time system matrix and Vd(α) = V(α) is the discrete measurement
matrix. ω(k) and η(k) are zero mean Gaussian white noise processes with covariances matrix Qd and variance
σ2

d, respectively.

An explicit form for the discrete time state-space model is given as follows:[
Ce(k + 1)
Cp(k + 1)

]
=

[
τ11 τ12

τ21 τ22

] [
Ce(k)
Cp(k)

]
+ ω(k) (9)

m(k) =
[

ve vp

] [
Ce(k)
Cp(k)

]
+ η(k),

where τij is the ith row and jth column entry of the system matrix Kd(α). The matrix entry τij is an exponential
function of the parameters kin, kout and kelm. To simplify the estimation process, we shall first estimate τij ’s
and then compute the pharmacokinetic parameters kin, kout and kelm.

We use the EKF algorithm for the joint estimation of the unknown pharmacokinetic parameters, kin, kout,
and kelm, volume fractions, ve, and vp, and ICG concentrations in plasma and the EES, Cp, and Ce. In a linear
state-space model when both states (ICG concentrations) and system parameters (pharmacokinetic rates and
volume fractions) are unknown, the linear state-space model can be regarded as a non-linear model in which the
linear system parameters and states are combined to form the new states of the non-linear model. This system
is then linearized and solved for the new unknown states using the EKF estimator. A detailed discussion of the
Kalman filtering algorithm for joint estimation of the pharmacokinetic parameters and ICG concentrations in
different compartments can be found in.1, 2

5. CLINICAL RESULTS

5.1. Apparatus

In this work, we used the data collected with a continuous wave (CW) NIR imaging apparatus. The apparatus
has 16 light sources, which are tungsten bulbs with less than 1 watt of output energy. They are located on a
circular holder at an equal distance from each other with 22.5 degree apart. Sixteen detectors, namely, silicon
photodiodes, are situated in the same plane. The breast is arranged in a pendular geometry with the source-
detector probes gently touching its surface. Figure 2 illustrates the configuration of the apparatus and the
configuration of the detectors and the sources in a circular plane. A band pass filter at 805nm, the absorption
peak of ICG, is placed in front of the sources to select the desired wavelength. A set of data for one source is
collected every 500 ms. The total time for a whole scan of the breast including 16 sources and 16 detectors is
8.8 seconds. The detectors use the same positions as the sources to collect the light originating from one source
at a time. Only the signals from the farthest 11 detectors are used in the analysis. For example, when Source 1
is on, the data is collected using detectors 4 to 14. A more detailed explanation of the apparatus and the data
collection procedure can be found in.12



Figure 2. The cut section of the 16 light source-detector device, holding a human breast inside. The diameter can be
fitted easily. The 16 light source-detector combinations in each arm are located equal distance, but when the device fits
the breast, only the diameter chances.
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Figure 3. Differential absorption reconstruction images for a set of time instants for Case 1.

5.2. Protocol
Patients with suspicious breast tumors were enrolled for this study. ICG was injected intravenously by bolus with
a concentration of 0.25 mg per kg of body weight. Diagnostic information is obtained using biopsy results. Since
biopsy modifies the blood volume and blood flow around the tumor region, measurements were made before the
biopsy. Data acquisition started before the injection of ICG and continued for 10 minutes.

5.3. Tumor Information
Three different patients with different tumor types are included in this study. First case, Case 1, is fibroadenoma,
which corresponds to a mass estimated to be 1−2 cm in diameter within a breast of 9 cm diameter. Second case,
Case 2, is adenocarcinoma corresponding to a tumor estimated to be 2−3 cm in diameter within a breast of 7.7
cm diameter. The third case, Case 3, is invasive ductal carcinoma, which corresponds to a mass estimated to be
3−4 cm in diameter.

5.4. ICG Concentration Measurements for Pharmacokinetic Parameter Estimations
Using the CW imager described above, for each patient, sufficient number of source detector readings were
collected from different angles. Reconstruction of differential absorption images using the source-detector readings
was discussed in Intes et al..5 A sample set of reconstructed differential absorption images for Case 1, Case 2, and
Case 3 for 9 selected time instants are shown in Figure 3, 4, and 5, respectively. Although only 9 reconstructions
are displayed, there are approximately 50 reconstructions, each corresponding to a different time instant for each
patient. Here, each 2-D image is composed of 649 pixels.

Using the linear relationship between ICG concentration and absorption coefficient, we obtained ICG concen-
tration images from differential absorption images for each case. A sample set of ICG concentration images for
the selected time instants is shown in Figure 6, 7, and 8 for Cases 1, 2 and 3, respectively. Here, the concentration
images represent bulk ICG concentration in the tissue, not specifically in plasma or the EES.
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Figure 4. Differential absorption reconstruction images for a set of time instants for Case 2.
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Figure 5. Differential absorption reconstruction images for a set of time instants for Case 3.
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Figure 6. 2-D ICG concentration images for a set of time instants for Case 1.
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Figure 7. 2-D ICG concentration images for a set of time instants for Case 2.
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Figure 8. 2-D ICG concentration images for a set of time instants for Case 3.

Using the ICG concentration curves, we estimated the pharmacokinetic parameters for each pixel based on the
two-compartment model. We then constructed 2-D permeability rate images using values of these parameters.
2-D images for kin, kout for two-compartmental model for each case are shown in Figures 9 (a), (b), 10 (a), (b),
and 11 (a), (b), respectively. We also analyzed whether the kinetic rates are statistically different or not for
the inside and outside the tumor region. The kin and kout values from inside and outside the tumor region are
statistically different with a p-value of less than 0.0001 for all cases.

We constructed 2-D ICG concentration images for plasma and the EES. Figures 12-17 show the ICG concen-
tration in the EES and plasma for 3 different time instants for Case 1, 2, 3, respectively. We observed that ICG
concentrations in plasma and the EES compartments are higher around the tumors agreeing with the hypothesis
that around tumor region ICG may act as a diffusible extravascular flow in leaky capillary of cancer vessels.
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Figure 9. 2-D images for pharmacokinetic rates kin and kout for Case 1.
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Figure 10. 2-D images for pharmacokinetic rates kin and kout for Case 2.
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Figure 11. 2-D images for pharmacokinetic rates kin and kout for Case 3.
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Figure 12. 2-D ICG concentration images in plasma for Case 1 for the 246.4th, 334.4th, and 422.4th seconds.
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Figure 13. 2-D ICG concentration images in the EES for Case 1 for the 246.4th, 334.4th, and 422.4th seconds.
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Figure 14. 2-D ICG concentration images in plasma for Case 2 for the 228.8th, 316.8th, and 404.8th seconds.
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Figure 15. 2-D ICG concentration images in the EES for Case 2 for the 228.8th, 316.8th, and 404.8th seconds.
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Figure 16. 2-D ICG concentration images in plasma for Case 3 for the 246.4th, 378.4th, and 510.4th seconds.
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Figure 17. 2-D ICG concentration images in the EES for Case 3 for the 246.4th, 378.4th, and 510.4th seconds.

6. CONCLUSION

In this study, we presented spatially resolved ICG pharmacokinetic images together with the ICG concentrations
in plasma and the EES using NIR data obtained from three breast cancer patients. We observed that the phar-
macokinetic rates are higher inside the tumor region compared to the outer region; and the ICG concentrations
in plasma and the EES are higher around the tumor region. Our study indicates that pharmacokinetic images
can be potentially useful to characterize tumor metabolism and angiogenesis. In the near future, we plan to
model gadolinium kinetics and compare with ICG kinetics and biopsy findings.
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Abstract
Diffuse optical tomography (DOT) in the near infrared involves the
reconstruction of spatially varying optical properties of turbid medium from
boundary measurements based on a forward model of photon propagation.
Due to the nonlinear nature of DOT, high quality image reconstruction is a
computationally demanding problem which requires repeated use of forward
and inverse solvers. Therefore, it is desirable to develop methods and
algorithms that are computationally efficient. In this paper, we develop two-
level overlapping multiplicative Schwarz-type domain decomposition (DD)
algorithms to address the computational complexity of the forward and inverse
DOT problems. We use frequency domain diffusion equation to model photon
propagation and consider a nonlinear least-squares formulation with a general
Tikhonov-type regularization for simultaneous reconstruction of absorption
and scattering coefficients. In the forward solver, a two-grid method is used
as a preconditioner to DD to enhance convergence. In the inverse solver, DD
is initialized with a coarse grid solution to achieve local convergence. We
show the strong local convexity of the nonlinear objective functional resulting
from the inverse problem formulation and prove the local convergence of the
DD algorithm for the inverse problem. We provide the computational cost
analysis of the forward and inverse solvers and demonstrate their performance
in numerical simulations.

1. Introduction

Diffuse optical image reconstruction based on the diffusion equation is a nonlinear ill-posed
problem that calls for the use of nonlinear minimization methods with regularization to stabilize
the solution [1].

Due to lack of analytical solutions for practical applications with arbitrary geometries,
DOT image reconstruction is often posed as an optimization problem involving two coupled
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steps, namely forward and inverse problems. Each step consists of an iterative solver whose
solution is used as an input to the other solver. More precisely, the forward solver computes
the photon density and its Jacobian with respect to the current optical coefficient estimates,
and the inverse solver updates the optical coefficients based on the output of the forward step.
The updated coefficients are then used in the forward solver to recompute the photon density
and its Jacobian. As a result, the computational complexity of DOT image reconstruction
quickly grows with the number of unknowns and dimension. Thus, real time computation of
DOT requires numerical techniques to reduce the complexity of the problem.

In this paper, we develop two-level domain decomposition (DD) algorithms to address
the computational complexity of the forward and inverse problems. More specifically, we
develop an overlapping multiplicative Schwarz-type DD algorithm equipped with a two-grid
preconditioner to solve the forward problem resulting from the finite element discretization
of the frequency-domain diffusion equation. For simultaneous absorption and scattering
coefficients reconstruction, we consider a nonlinear least-squares formulation with a general
Tikhonov-type regularization. To solve the resulting optimization problem, we develop a
two-level overlapping multiplicative Schwarz-type DD algorithm, where we use a trust region
method for minimization. Finally, under the conditions that lead to the local strong convexity
of the nonlinear objective functional considered for the inverse problem formulation, we prove
the local convergence of the DD algorithm developed for the inverse problem.

DD methods originate from the Schwarz alternating procedure, which is known to be
the first DD method applied for solving partial differential equations (PDEs) [32]. In the last
two decades, motivated by the need for fast and efficient algorithms for solving large-scale,
three-dimensional problems, DD methods have been extensively developed and applied in the
area of numerical solution of PDEs [31, 33]. DD methods involve partitioning of bounded
domains into two or more sub-domains, thereby dividing the original problem into a series of
smaller sized sub-problems defined on the sub-domains. As a result, DD methods allow the
parallel solution of the resulting sub-problems, making the computation extremely efficient.

Owing to the computational advantages they offer, DD methods have been applied
to inverse problems as well. In [4–6, 36, 38], DD methods were applied to constrained
convex minimization problems arising from variational inequalities, where the term ‘space
decomposition’ was introduced for DD methods in the context of optimization problems. In
[5, 36, 38], the convergence of DD methods has been shown for convex optimization problems.
DD methods have also been applied to a number of application specific inverse problems,
including radon transform inversion in radar and x-ray tomography [8, 9], geophysics [14],
parameter estimation problems [37], inverse heat conduction problem [29] and welding and
metal cutting problems [23, 28]. In the area of DOT, a ‘data driven zonation’ method coupled
with extended Kalman filtering was applied in conjunction with a DD method [15], where
the convergence of the DD algorithm was shown empirically. In this work [15]; instead
of partitioning the main inverse problem formulation, independent local inverse problems
were formulated on each non-overlapping sub-domain, using the measurement data due to
the source-detector pairs that were physically present in the sub-domain. In the same work,
a multi-grid algorithm was used to accelerate the finite difference solution of the forward
problem; however, DD methods were not used. A similar multi-grid-based approach for
the forward problem was also presented in [30]. Multi-grid algorithms in the context of
optimization have been proposed for the solution of the inverse DOT problem as well [26, 40],
however in both of these studies [26, 40], multi-grid was used as an iterative solver and DD
methods were not considered. In [16, 17], a fast adaptive composite-grid (FAC) algorithm was
proposed for the linearized DOT inverse problem, which can be viewed as a fully overlapping
Schwarz-type domain decomposition algorithm [13], to provide enhanced spatial resolution
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in a region of interest. Most recently in [34], a multi-level overlapping Schwarz-type domain
decomposition algorithm was proposed for the linearized inverse DOT problem, which was
posed as a linear least-squares problem without regularization. In all these studies [16, 17, 34],
DD methods were not pursued for the solution of the forward problem and convergence of the
proposed algorithms was presented empirically.

In this work, we consider an overlapping partitioning of the optical domain to convert
the finite element formulation of the frequency-domain diffusion equation into a number of
smaller-sized sub-problems and use a multiplicative Schwarz-type DD algorithm. For the
numerical solution of elliptic PDEs such as the frequency-domain diffusion equation, it has
been shown that one-level domain decomposition methods are not efficient in conveying the
information on one sub-domain to the others, which is attributed to the rapid decay of Green’s
function of these PDEs and the dependence of the solution on the boundary conditions [33].
An effective way to address this issue is to use multi-grid methods [33]. Therefore, we
employ a two-grid preconditioner to enhance the global communication of the multiplicative
Schwarz-type DD algorithm applied on the fine resolution level. We note that the multiplicative
nature of the Schwarz algorithm provides higher convergence rate as compared to that of the
additive Schwarz algorithms (section 3.3). We refer to [10, 33] for a detailed discussion about
the convergence analysis of DD methods with multi-grid preconditioners for the numerical
solution of elliptic PDEs. For the inverse problem, we consider a nonlinear optimization
problem resulting from the nonlinear least-squares formulation with a general Tikhonov-type
regularization. Unlike the approach in [15], we formulate a single inverse problem on the
whole domain using the boundary measurements due to all source-detector pairs. Then,
we apply a two-level Schwarz-type multiplicative DD algorithm coupled with a trust region
method to successively minimize the resulting objective functional on each overlapping sub-
domain. In this case, the coarse level serves to provide a good initial guess for the fine level,
where the inverse problem is formulated. Under some mild conditions, we show the local
strong convexity of the nonlinear objective functional. Then, we prove the local convergence
of the DD algorithm for the nonlinear inverse DOT problem by using the local strong convexity
property of the nonlinear inverse problem formulation. In this context, the coarse-level solution
used as the initial guess to the fine level is crucial in achieving the convergence. Note that we
show the convergence properties of the DD algorithm for the inverse problem, independent
of the optimization method. Therefore, the convergence properties do not change if the
trust region method is replaced by another optimization method. We perform two sets of
experiments to show the computational savings provided by the proposed DD algorithms as
compared to non-DD algorithms.

The rest of the paper is organized as follows: in section 2, we define the forward problem
and formulate the inverse problem, respectively. In section 3, we present the DD algorithms
developed for the solution of the forward and inverse problems, and discuss the convergence
properties and computational complexity of the proposed algorithms. Section 4 presents the
numerical simulations and section 5 summarizes our results and conclusions. The paper
includes an appendix for the proof of the local convergence of the DD algorithm developed
for the inverse problem.

2. Diffuse optical tomography

2.1. Photon diffusion equation in frequency domain

We model the propagation of light in biological tissue by the diffusion equation with Robin
boundary conditions [1]. In frequency domain, the photon diffusion equation is given as
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follows:

−∇ · (κ∇�) +
(
µa +

iω

c

)
� = q in �

� + 2aκ
∂�

∂ν
= 0 on ∂�

(2.1)

where � is a Lipschitz domain in R
n, n = 2, 3; ∂� is its boundary, � is the photon density, c

is the speed of light, ω is the angular frequency of the source q, ν is the unit outward normal
vector on the boundary, a is a parameter to account for the the refraction index mismatch at
the boundary, and µa,µ

′
s and κ = 1

3(µa+µ′
s )

are the absorption, reduced scattering and isotropic
diffusion coefficients, respectively. For the general anisotropic material, see [19].

The unique identification of the optical coefficients µa and κ in (2.1) when Dirichlet-
to-Neumann map is given (or when infinite sources and infinite detectors are given) can be
easily shown by using the uniqueness results for the isotropic case [35]. For the uniqueness
of the optical coefficients when κ has anisotropic anomalous region contained in a known
background, see [18, 20, 22].

In [2, 3], numerical examples show that the Rytov approximation provides better DOT
images as compared to the Born approximation. Therefore, we use the Rytov measurements
[27] on the boundary:

� = log

(
−κ

∂�

∂ν

)
(2.2a)

= log

(
1

2a
�

)
. (2.2b)

Then, the Jacobian of � with respect to µa and µ′
s is given as follows:

∂�

∂µa

(r) = − 1

2a�(r)

∫
�

[−3κ(r ′)2∇G(r, r ′)∇�(r ′) + G(r, r ′)�(r ′)] dr ′, (2.3a)

∂�

∂µ′
s

(r) = − 1

2a�(r)

∫
�

−3κ(r ′)2∇G(r, r ′)∇�(r ′) dr ′ (2.3b)

where r ∈ ∂�,� is the complex conjugate of �, and G is Green’s function of (2.1).

2.2. Discretization and finite element method

Suppose that there are Ns sources located at rj , j = 1, . . . , Ns ; and Nd detectors located on
the boundary of �, at ri+Ns

, i = 1, . . . , Nd . Let �j be the solution of (2.1) for the point source
qj (r) = δ(r − rj ). Define

�i,j = log(�j (ri+Ns
)), (2.4)

for the ith detector and the j th source.
Consider the finite element space spanned by the bases uk, k = 1, . . . , Nn. Note that

for piecewise bilinear element, Nn is the same as the number of nodes. Let Tm denote the
elements for m = 1, . . . , Ne, where Ne is the number of the elements. Then, the finite element
formulation for (2.1) in this finite element space for the point source qj located at rj , is given
as follows: [

K + C +
1

2a
A

]
�j = f j , (2.5)
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where K,C,A are Nn × Nn matrices and f j is a Nn × 1 column vector given by

Kkl =
∫

�

κ∇uk∇ul

Ckl =
∫

�

(
µa + i

ω

c

)
ukul

Akl =
∫

∂�

ukul

f
j

l =
{

1 if l = j

0 Otherwise,

for k, l = 1, . . . , Nn.
Next, we define the following function spaces:

V y = {η ∈ L2(�)|Ly � |η(r)|r∈� � Uy}, (2.6a)

V
y

Ne
= {η ∈ V y |η is constant at each Tm,m = 1, . . . , Ne}, (2.6b)

where y is either µa or µ′
s , and Ly and Uy are positive constants. Note that we can choose

different values for Ly and Uy depending on µa and µ′
s . Let η ∈ V

y

Ne
be η = (η1, . . . , ηNe

),
then we define the norms in V y and V

y

Ne
as follows:

‖η‖V y = ‖η‖L2(�) for η ∈ V y,

‖η‖V
y

Ne
=
√√√√ Ne∑

m=1

η2
m

|Tm| for η = (η1, . . . , ηNe
) ∈ V

y

Ne
,

where |Tm| is the area of Tm.
Assume that µa ∈ V

µa

Ne , µ
′
s ∈ V

µ′
s

Ne . Let �j(k) be the value of �j at the kth node point,
G(k : j) be the value of Green’s function at the kth node point due to the j th point source,
and κ(m) be the value of κ at the mth element Tm. By discretizing (2.3a), we obtain the value
of the Jacobian of �i,j at the mth element as follows:

∂�i,j

∂µa

(m) = − 1

2a�j (i)

Nn∑
k,l=1

G(i : k)[−3κ(m)2Em(k, l) + Fm(k, l)]�j(l), (2.7a)

∂�i,j

∂µ′
s

(m) = − 1

2a�j (i)

Nn∑
k,l=1

G(i : k)[−3κ(m)2Em(k, l)]�j(l), (2.7b)

where

Em(k, l) =
∫

Tm

∇uk∇ul, (2.8a)

Fm(k, l) =
∫

Tm

ukul. (2.8b)

We note that in most practical applications, computing G(i : k) for each point source
located at the kth node and evaluating at the ith detector location is not feasible. Instead, we
consider the adjoint problem associated with (2.1) [1], with the adjoint point source located at
the ith detector position. Then, the solution G∗(k : i) to the adjoint problem at the kth node
for the adjoint source at the ith detector location satisfies G∗(k : i) = G(i : k).
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2.3. DOT as a nonlinear ill-posed optimization problem and the trust region method

Although the unique determination of µa and µ′
s from the measurement � at the boundary is

possible for infinite sources and detectors when ω �= 0 and κ is known near the boundary [1],
the unique solvability of inverse DOT problem for finite sources and detectors is not known. In
addition, when the number of measurements is less than the total number of unknowns in the
discretized inverse problem, the underdetermined problem challenges the determination of the
optical coefficients. However, even in the overdetermined case, the inevitable ill posedness of
the inverse problem may result in large perturbations in the reconstructed optical coefficients
due to small amount of noise in the measurements. In order to address the ill posedness, we
use general Tikhonov-type regularization and consider the following nonlinear minimization
problem:

(µa, µ
′
s) = argmin F(η, ν),

(η,ν)∈V
µa
Ne

×V
µ′

s
Ne

(2.9)

where

F(η, ν) = 1

2

Ns∑
j=1

Nd∑
i=1

(�i,j (η, ν) − Mi,j )
2 + α�(η, ν). (2.10)

In (2.10), Mi,j denotes the measurement at the ith detector due to the j th source, � is a

non-negative operator from V
µa

Ne
× V

µ′
s

Ne
into non-negative real numbers R

+ ∪ {0}, and α > 0
is the regularization parameter. For example, � can be chosen as follows:

�(η, ν) = ‖L1(η − η∗)‖2
V

µa
Ne

+ ‖L2(ν − ν∗)‖2

V
µ′

s
Ne

, (2.11)

where (η∗, ν∗) ∈ V
µa

Ne
× V

µ′
s

Ne
is a given prior for the optical coefficients, and L1 and L2 are

Ne ×Ne matrices. Note that depending on the choice of L1 and L2, (2.11) can be either zeroth-
or first-order Tikhonov regularizer. For other regularization methods, see [19].

Note that (2.10) can be extended in a straightforward manner to include multi-frequency
measurements. However, to simplify our notation, we will present the rest of our development
for the single frequency measurements.

The optimization problem in (2.9) is composed of two steps; the step to determine
the minimizing direction at the current coefficients (µa, µ

′
s); and the step to perform line

search on those minimizing directions. In the Newtonian method, the minimizing direction is
−(F ′′)−1F ′, where F ′ and F ′′ are the Jacobian and the Hessian of F with respect to (µa, µ

′
s),

respectively.
In this paper, we adopted the trust region method [12], one of the Newtonian approaches,

which updates (µa, µ
′
s) in (2.9) iteratively as

(µa, µ
′
s) ← (µa, µ

′
s) + (δµa, δµ

′
s),

by solving the following quadratic minimization problem formulated at the previous update
of (µa, µ

′
s):

(δµa, δµ
′
s) = arg min

x∈K

{
1
2xtF ′′(µa, µ

′
s)x + xtF ′(µa, µ

′
s)
}
,

subject to‖Dx‖ � T . (2.12)

In (2.12), D is a scaling matrix, T is a trust region parameter and K is a subspace of V µa ×V µ′
s .

The scaling matrix D is used to handle the constraints for the minimization. To stabilize the
minimization, we control the trust region parameter T, similar to the way the parameter λ in
the Levenberg–Marquardt method is controlled [7, 24, 25]. To avoid extensive computation,
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the subspace K is chosen as the two-dimensional subspace composed of the gradient direction
and the approximate Newton direction. This makes the trust region method suitable for
large-scale constrained optimization problems like the one in (2.9).

Note that F ′ and F ′′ for a given (µa, µ
′
s) in (2.12) are given as follows:

F ′ = J tb + α�′, (2.13a)

F ′′ = J tJ + Hb + α�′′, (2.13b)

where b = �i,j (µa, µ
′
s) − Mi,j , J and H are the Jacobian and the Hessian of the operator

�i,j , respectively. J is given by J = J(i,j)(m) = ( �i,j

∂µa
(m),

�i,j

∂µ′
s
(m)

)
, i = 1, . . . , Nd, j =

1, . . . , Ns,m = 1, . . . , Ne as in (2.7a). For the computation of H, see [21].

Taking the vanishing gradient point x = (δµa, δµ
′
s) ∈ Vµa

Ne
× V

µ′
s

Ne
of the quadratic form

1
2 xtF′′(µa, µ

′
s)x + xtF′(µa, µ

′
s) in (2.12), we obtain

F ′′(µa, µ
′
s)(δµa, δµ

′
s) = −F ′(µa, µ

′
s). (2.14)

Using (2.13a), we get

[J t (µa, µ
′
s)J (µa, µ

′
s) + H(µa, µ

′
s)b + α�′′](δµa, δµ

′
s) = −[J (µa, µ

′
s)

tb + α�′]. (2.15)

Thus, if δµa and δµ′
s are sufficiently small, the trust region method can be used to solve

(2.12) at each iteration without considering the scaling matrix D.
We discuss in section 3.2 how we apply the two-level multiplicative DD method to solve

the optimization problem in (2.9) and (2.10) by the trust region method.

3. Two-level domain decomposition methods for diffuse optical tomography

In this section, we describe the two-level domain decomposition methods considered in
this paper, as applied to the forward and inverse problems. For simplicity and notational
clarity, we will describe our notation and approach for the two-dimensional optical domain
� = [a, b] × [c, d] ⊂ R

2 and bilinear finite elements. Its extension to the three-dimensional
domain is straightforward, by appropriate definition of operators and function spaces.

Let �h denote the domain � that is uniformly divided by Nx times in the x-axis direction
and Ny times in the y-axis direction. Thus, �h has Nn = (Nx + 1) × (Ny + 1) nodes and
Ne = Nx × Ny elements. We shall call �H with (Nx/2 + 1) × (Ny/2 + 1) nodes and Nx/2 ×
Ny/2 elements, the coarse level of �h, assuming Nx and Ny are even.

Let �h be decomposed into disjoint union of d sub-domains �l, l = 1, . . . , d such that

�h =
d⋃

l=1

�l. (3.16)

(3.16) describes the non-overlapping domain decomposition. For the overlapping domain
decomposition, we define �w

l , l = 1, . . . , d; an extension of �l , recursively for all non-
negative integers w as follows: �0

l = �l , and �w
l is the union of �w−1

l and its adjacent
elements in contact with the boundary of �w−1

l , where w will be called the width of the
overlapping region. Thus, the overlapping domain decomposition is given by

�h =
d⋃

l=1

�w
l . (3.17)

Figure 1 illustrates an overlapping and a non-overlapping domain decomposition for two sub-
domains. Table 1 lists the acronyms and explanations for the algorithms developed in this
paper.
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Figure 1. Overlapping domain decomposition and nonoverlapping domain decomposition.

Table 1. The acronyms and explanations of the algorithms.

non-DDM non-domain decomposition method
–Trust region method for the inverse solver using (2.9) and (2.10).
and finite element method for the forward solver
without using domain decomposition and multigrid methods

MODDM Multiplicative overlapping domain decomposition method

TMODDM Two-level multiplicative overlapping domain decomposition method
–The forward solver :
Multiplicative Schwarz method with two-grid preconditioner

MSDM Multiplicative space decomposition method

TMSDM Two-level multiplicative space decomposition method
–The inverse solver :
Multiplicative Schwarz method with coarse-level initialization
using (2.9) and (2.10).

3.1. Two-level multiplicative overlapping domain decomposition method for the forward
problem

The forward problem is defined by the boundary value problem (2.1), which is approximated
by the finite element formulation (2.5). In this work, we apply a two-level multiplicative
overlapping domain decomposition method (TMODDM) to solve (2.5) in an attempt to
reduce the computational complexity of the forward problem. In this context, the multi-level
structure in TMODDM functions to speed up the convergence, while DD lets us formulate the
forward problem as a sequence of smaller-sized problems, thereby reducing the computational
requirements. Each sweep of TMODDM involves two steps: the coarse-level correction and
the sub-domain correction. In the following discussion, we describe these steps in detail.

We list the notation and explanation for the variables used in Algorithm TMODDM in
table 2.

3.1.1. The coarse-level correction: By formulating a smaller-sized problem on the coarse
grid �H , the coarse-level correction step provides an approximation to the error in the optical
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Table 2. The notations used in Algorithm TMODDM.

�0
j Initial guess for the photon density for the j th source

�
n−1+ 1

d+1
j The update of �n−1

j by coarse-level correction

at the nth sweep of TMODDM

�
n−1+ p+1

d+1
j The update of �

(n−1)+ 1
d+1

j after p successive sub-domain

corrections on ∪p

k=1�
w
k at the nth sweep of TMODDM

density estimate, which in turn is used to update the optical density on �h. The coarse-level
correction step can be explained in detail as follows:

Let �n denote the current solution update for the optical density � on �h after the nth
sweep of TMODDM. The coarse-level correction in the (n+ 1)th sweep starts with computing
the residual [11] on the fine grid �h:

rh ←
(

K + C +
1

2a
A

)
h

�n − f, (3.18)

and restricting it onto the coarse grid �H :

rH ← R(rh), (3.19)

where R : R(Nx+1)×(Ny+1) → R(Nx/2+1)×(Ny/2+1) is the restriction operator. In this work, we use
the full weighting restriction operator [39], which performs a nine-point weighted averaging.
An approximation to the error in the solution update �n can be obtained by solving the defect
equation [39] formulated on �H :(

K + C +
1

2a
A

)
H

eH = rH . (3.20)

Then, the solution of (3.20) is used to update �n, which completes the coarse-level correction:

�n+ 1
d+1 ← �n + P(eH ), (3.21)

where P : R
(Nx/2+1)×(Ny/2+1) → R

(Nx+1)×(Ny+1) is the prolongation operator. In this work, we
use a bilinear prolongation operator [11].

3.1.2. Sub-domain correction. Following the coarse grid correction step, the sub-domain
correction is performed on the fine grid �h, by employing a multiplicative overlapping domain
decomposition method (MODDM). In this step, the boundary value problem (2.1) is redefined
on each of the overlapping sub-domains with appropriate boundary conditions. Then, the
solution of the boundary value problem formulated on each sub-domain is used to update the
optical density. In the following, we present the details of the sub-domain correction.

Let �n+ p

d+1 be the current optical density estimate, obtained by updating �n+ 1
d+1 with the

solutions of the boundary value problems formulated on the sub-domains �w
1 ,�w

2 , . . . , �w
p−1.

Then, the boundary value problem on the sub-domain �w
p is formulated as

−∇ · (κ∇v) +
(
µa +

iω

c

)
v = q in �w

p (3.22a)

v + 2aκ
∂v

∂ν
= 0 on ∂�w

p ∩ ∂�, (3.22b)

v = �n+ p

d+1 on ∂�w
p \∂�. (3.22c)
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Then, the solution of (3.22a) is used to obtain the new optical density estimate on � as follows:

�n+ p+1
d+1 =

{
v in �w

p

�n+ p

d+1 in �\�w

p .
(3.23)

Recursive application of this procedure for the rest of the sub-domains �w
l : l = p + 1, p +

2, . . . , d completes the sub-domain correction step and results in the optical density update
�n+1 for the next TMODDM sweep. We refer to the pseudo-code in algorithm 1 for a summary
of the coarse-level correction and sub-domain correction steps in TMODDM.

3.2. Two-level multiplicative overlapping space decomposition method for the inverse
problem

In this work, we apply a two-level multiplicative overlapping space decomposition method
(TMSDM) to solve the inverse problem in (2.9). We use the term ‘space decomposition’ to
distinguish the DD method developed for the optimization problem (2.9) from TMODDM
described in section 3.1. Although both methods involve domain decomposition; in the
forward problem, the DD method is applied on a partial differential equation, whereas in the
inverse problem, it is applied to an optimization problem.

In the forward problem, we obtain the value of the photon density at each node, whereas
in the inverse problem, we are interested in the constant value of the optical coefficients on
each element. Note that this is a direct consequence of the different discretization schemes
followed in the forward and inverse problems. Even though TMSDM can be applied for any
overlapping domain decomposition, in this work, we use the same domain decomposition in
both forward and inverse problems to avoid introducing new notation.

Algorithm 1 TMODDM

Ns : The number of sources.
Nd : The number of detectors.
MF : The maximum number of sub-domain correction sweeps.
for j = 1, . . . , Ns + Nd do

Initialize �0
j .

for n = 1, . . . ,MF

Start coarse-level correction

r
j

h ← (
K + C + 1

2a
A
)
h
�n−1

j − f j , {Compute the residual}
r

j

H ← R
(
r

j

h

)
Restrict the residual

e
j

H ← (
K + C + 1

2a
A
)−1
H

r
j

H , {Compute the error on �H }
�

n−1+ 1
d+1

j ← �n−1
j + P

(
e
j

H

) {Update the photon density}
end coarse-level correction

for l = 1, . . . , d do

Update �
n−1+ l+1

d+1
j at �w

l by (3.22) and (3.23) {Sub-domain correction}
end for

end for
end for

Compute �i,j and ∂�i,j

∂µa
(m),

∂�i,j

∂µ′
s
(m),m = 1, . . . , Ne using (2.4) and (2.7).

{Post-processing}
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Table 3. The notations used in Algorithm TMSDM.

µ0 Initial guess for the optical coefficients µ = (µa, µ
′
s )

µn−1+ 1
d+1 The update of µn−1 by the coarse-level inverse solver

at the nth sweep of TMSDM

µn−1+ p+1
d+1 The update of µ(n−1)+ 1

d+1 after p successive sub-domain
corrections on ∪p

k=1�
w
k at the nth sweep of TMSDM

TMSDM consists of two steps: Coarse-level initiation and sub-domain correction. The
coarse-level initiation step provides an initial guess for the fine level, by solving (2.9) on the
coarse level. The sub-domain correction involves the minimization of (2.9) on the fine level,
iteratively on each sub-domain using a multiplicative space decomposition method (MSDM).
In the following, we present the details of coarse-level initiation and sub-domain correction.

We list the notation and explanation for the variables used in aslgorithm TMSDM in
table 3.

3.2.1. Coarse-level initiation: By solving a smaller sized minimization problem formulated
on the coarse grid �H , the coarse-level initiation provides a computationally viable
approximation for the optical coefficient estimates. This approximation is then used as an
initial guess at the first sweep of the sub-domain correction step. In theorem 1, we show that
the local convergence of the sub-domain correction step under the condition that the initial
guess is sufficiently close to the solution. Therefore, the coarse-level initiation is motivated to
achieve the convergence of the sub-domain correction. The coarse-level initiation step can be
described as follows:

Let (µa, µ
′
s)

0 denote the initial guess for the optical coefficients on �h for the optical
coefficients (µa, µ

′
s). The coarse-level initiation starts with downsampling (µa, µ

′
s)

0 onto the
coarse grid �H :

(µa, µ
′
s)

0
H ← D((µa, µ

′
s)

0), (3.24)

where the downsampling operator D : R
Ne → R

Ne/4 is defined by

D(h)(mx,my) = 1
4 [h(2mx − 1, 2my − 1) + h(2mx − 1, 2my)

+ h(2mx, 2my − 1) + h(2mx, 2my)], (3.25)

for 1 � mx � Nx/2, 1 � my � Ny/2, h ∈ R
Ne , where Ne/4 = Nx/2 × Ny/2 is the number

of elements on the coarse level. Then, we formulate the inverse problem on the coarse grid
with the initial guess (µa, µ

′
s)

0
H and seek a solution to the following minimization problem:

(µa, µ
′
s)

1
d+1
H = argmin FH(η, ν),

(η,ν)∈V
µa
Ne/4×V

µ′
s

Ne/4

(3.26)

where V
y

Ne/4 = {η ∈ V y |η is constant at each Tm,m = 1, . . . , Ne/4} for y = µa,µs and FH :

V
µa

Ne/4 × V
µ′

s

Ne/4 → R is given by

FH(η, ν) = 1

2

Ns∑
j=1

Nd∑
i=1

(�i,j (η, ν) − Mi,j )
2 + α�H (η, ν),

and �H : V
µa

Ne/4 × V
µ′

s

Ne/4 → R
+⋃{0}. Then, the initial guess (µa, µ

′
s)

1
d+1 for the sub-domain

correction step is obtained by upsampling (µa, µ
′
s)

0
H to the fine grid �h:

(µa, µ
′
s)

1
d+1 ← U

(
(µa, µ

′
s)

1
d+1
H

)
, (3.27)
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where the upsampling operator U : R
Nx/2×Ny/2 → R

Nx×Ny in (3.27) is the bilinear prolongation
operator.

3.2.2. Sub-domain correction: Following the coarse grid initiation step, the sub-domain
correction is performed on the fine grid �h. In this step, the inverse problem (2.9) is solved by
successively minimizing the objective functional in (2.9) with respect to the unknown optical
coefficients on each sub-domain. Thus, the optimization problem (2.9) is decomposed into a
sequence of smaller minimization problems, using MSDM.

Before we give the details of the sub-domain correction step, we first introduce some

notation. Recall that (η, ν) ∈ V
µa

Ne
× V

µ′
s

Ne
. Then, for each l = 1, . . . , d, we can decompose

(η, ν) into orthogonal components as follows:

(η, ν)l =
{
(η, ν) in �w

l

(0, 0) in �\�w

l ,
(3.28)

and

(η, ν)l′ =
{
(0, 0) in �w

l

(η, ν) in �\�w

l ,
(3.29)

such that (η, ν) = (η, ν)l + (η, ν)l′ .
The first sub-domain correction sweep is initiated by the update (µa, µ

′
s)

1
d+1 provided by

the coarse-level initiation. Let (µa, µ
′
s)

n+ p

d+1 be the estimate for the optical coefficients in the
(n + 1)th sub-domain correction sweep, obtained by updating (µa, µ

′
s)

n+ 1
d+1 with the solution

estimates obtained on the sub-domains �w
1 ,�w

2 , . . . , �w
p−1. Then, the inverse problem on the

sub-domain �w
p reads

(µa, µ
′
s) = argmin F((η, ν)p + (η, ν)p′),

(η,ν)∈V
µa
Ne

×V
µ′

s
Ne

(3.30)

subject to

(η, ν)p′ = (µa, µ
′
s)

n+ p

d+1
p′ ,

where F(η, ν) is given by (2.10). Thus, the minimization is performed over only (η, ν) on
�w

p . Then, the solution of (3.30) is used to obtain the new optical coefficients update on � as
follows:

(µa, µ
′
s)

n+ p+1
d+1 =

{
(µa, µ

′
s)p in �w

p

(µa, µ
′
s)

n+ p

d+1
p′ in �\�w

p .
(3.31)

Successive application of this procedure for the rest of the sub-domains �w
l : l =

p + 1, p + 2, . . . , d completes the (n + 1)th sweep of the sub-domain correction step and
results in the optical coefficient update (µa, µ

′
s)

n+1 for the next sub-domain correction sweep.
We refer to the pseudo-code in algorithm 2 for a summary of the coarse-level initiation and
sub-domain correction steps in TMSDM.

3.3. Convergence of TMODDM and TMSDM

Assume that the mesh size of the finite element formulation is O(h) and that the sub-domains
are of diameter O(H) and the width of the overlapping region is O(δH), where 0 � δ < 1.
Then the following convergence behaviour is known for algorithm TMODDM (see section
2.5 in [33]).

(a) Convergence is poor if δ = 0, but improves rapidly as δ increases.
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(b) If δ is fixed, the number of sub-domain correction sweeps required for convergence is
bounded independent of h,H and H/h.

(c) The number of sub-domain correction sweeps required for convergence is roughly half of
that needed for the additive Schwarz method.

Algorithm 2 TMSDM

d: The number of sub-domains.
MU : The maximum number of sub-domain correction sweeps.
Initialize µ0 on �h.
Start coarse-level initiation
(µa,µ

′
s)

n
H ← D((µa, µ

′
s)

n)

Solve (µa, µ
′
s)

n/(d+1)

H = arg min
(η,ν)∈V

µa
Ne/4×V

µ′
s

Ne/4
FH(η, ν)

(µa, µ
′
s)

n+ 1
d+1 ← U

(
(µa, µ

′
s)

n+ 1
d+1

H

)
end coarse-level initiation
for n = 1, . . . , MU do

for l = 1, . . . , d do
(µa, µ

′
s) = arg min

(η,ν)∈V
µa,l

Ne
×V

µ′
s ,l

Ne

F (η, ν)

subject to (η, ν)l′ = (µa, µ
′
s)

n+ l
d+1

l′

Update the optical coefficients by (3.31)
end for

end for

Therefore, in terms of convergence, multiplicative Schwarz algorithms are more advantageous
as compared to additive Schwarz algorithms. This follows from the fact that the multiplicative
Schwarz algorithms take the advantage of immediate use of the solution update in the
successive neighbouring sub-problem. On the other hand, in additive Schwarz algorithms,
one computes the solutions to the localized sub-problems independent of each other and uses
the solution updates in the following sub-domain correction sweep. We refer to [31] and [33]
for a detailed discussion of the Schwarz algorithms.

The local linear convergence of Algorithm MSDM is shown below, using the results
in [5].

Theorem 1. Let � be the regularization operator given in (2.11), and �′ and �′′ denote the
first- and second-order Fréchet derivatives of �. Assume that there is a positive constant C�

such that yt�′′y � C�yty for all y ∈ V
µa

Ne
× V

µ′
s

Ne
.

Let (µa, µ
′
s)

n be the nth step MSDM approximation of (µa, µ
′
s). Assume that

‖(µa, µ
′
s) − (µa, µ

′
s)

q‖
V

µa
Ne

×V
µ′

s
Ne

� αC�

CHCJ

, (q = 0, . . . , n). (3.32)

Then,

‖(µa, µ
′
s)

n − (µa, µ
′
s)‖V

µa
Ne

×V
µ′

s
Ne

�
(

8

9

)n
α2C�

C2
HCJ

[C�CJ + C̃�CH ], (3.33)

where C̃� = ‖�′‖
V

µa
Ne

×V
µ′

s
Ne

→R
and CJ ,CH are positive constants such that

‖J (µa, µ
′
s)‖V

µa
Ne

×V
µ′

s
Ne

→l2
� CJ , (3.34a)
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‖H(µa, µ
′
s)‖V

µa
Ne

×V
µ′

s
Ne

→l2
� CH . (3.34b)

Proof. See the appendix for the proof of theorem 1.
Note that CJ and CH depend on the frequency ω. For the multi-frequency measurement

case with Nω frequencies ω1, . . . , ωNω
, let

CJ = max
i=1,·,Nω

C
ωi

J , CH = max
i=1,·,Nω

C
ωi

H , (3.35)

where C
ωi

J and C
ωi

H are the frequency-dependent norm bounds. Then, theorem 1 can be
extended to multi-frequency measurement case in a straightforward manner, by replacing the
norm bounds in (3.34a) and (3.34b) by the bounds given in (3.35).

For the general Tikhonov regularizer, � is chosen as

�(η, ν) = ‖L1(η − η∗)‖2
V

µa
Ne

+ ‖L2(ν − ν∗)‖2

V
µ′

s
Ne

.

Therefore, if L1 and L2 are positive definite, the assumption of yt�′′y � C�yty in theorem 1
holds since

(η, ν)t�′′(η, ν) = ηtL1η + νtL2ν.

Clearly, this assumption holds for the zeroth-order Tikhonov regularization. For the
appropriate choice of the discrete approximation of the differential operator, first-order
Tikhonov regularizer also satisfies the assumption in theorem 1.

Note that in [21], we have shown that the first- and second-order Fréchet derivatives of the
coefficient-to-measurement operator with respect to (µa, µ

′
s) exist and are bounded. Similarly,

J and H, being finite approximation to the first- and second-order Fréchet derivatives, satisfy
(3.34a) and (3.34b). �

3.4. Computational cost of the algorithms

In this subsection, the computational cost of the proposed algorithms is analysed. We will call,
the method solving (2.5) and (2.15) without any domain decomposition, the non-DD method
and compare it with the proposed methods.

The system matrices for each equation are 2Nn × 2Nn and 2Ne × 2Ne, respectively.
Assume that we require O

(
N

q
n

)
and O

(
N

q
e

)
(1 � q � 3) floating point operations for each

equation with the non-DD method. Note that for a full nonzero matrix, q = 3 and for a
diagonal matrix, q = 1. Suppose that we use d sub-domains with equal nodes and elements
for the proposed algorithms.

The coarse-level computation needs 4−q times (in two dimensions) or 8−q times (in three
dimensions) the computations required on the fine level computation for the forward and
inverse solvers. Thus, if we neglect the coarse-level computation, the computational cost of
algorithm MODDM is MF d1−q (for one computer) and MF d−q (for d parallel computers)
times that of the non-DD method, where MF is the maximum number of sub-domain
correction sweeps. Recall that MF is the maximum sweep of all sub-domain corrections
followed by the coarse grid correction. It is well known that for a given MF , the convergence
behaviour of TMODDM is independent of Nn, d and Nn/d (see (a)–(c) below subsection 3.3).
Furthermore TMODDM has good convergence behaviour and it has better convergence
behaviour for smaller MF as compared to MODDM. In this work, we have chosen MF = 3
when TMODDM is used in the inverse solver in section 4.2. This analysis shows that
by using multiple sub-domains, algorithm TMODDM can achieve significant reduction in
computational requirements.
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Table 4. The comparison of the computational costs for the non-DD method, TMSDM on one,
d, and d2 computers. q is a constant between 1 and 3 depending on the sparsity of the system
matrix. In the table, Nn is the number of nodes, Ne is the number of elements, d is the number of
sub-domains, MF is the number of sweeps for the forward solver and MU is the number of sweeps
for the inverse solver.

Computational cost

Method Forward solver Inverse solver

non-DDM O(N
q
n ) O(N

q
e )

TMSDM on 1 computer MF d1−qO(N
q
n ) MU d1−qO(N

q
e )

TMSDM on d computers MF d1−qO(N
q
n ) MU d−qO(N

q
e )

TMSDM on d2 computers MF d−qO(N
q
n ) MU d−qO(N

q
e )

The computational cost of algorithm TMSDM with algorithm TMODDM as the forward
solver, and the computational cost of the non-DD method are tabulated in table 4, using 1,

d and d2 computers. When d parallel computers are used, the parallel computing is applied
to the inverse problem only, whereas when d2 computers are used, the parallel computing
is applied to both the inverse and forward problems. Note that this comparison for the
inverse solver is based on the assumption that the speed of data communication between
parallel computers is sufficiently fast. Parallel computation is not treated in this paper, but
the proposed algorithms combined with the parallel computing is expected to provide more
efficient results.

4. Numerical simulations

In this section, we demonstrate the performance of the algorithms TMODDM and TMSDM
using simulated optical data. In section 4.1, we conduct a series of experiments to test and
compare the performance of TMODDM to that of the one-level DD method. In section 4.2,
we test TMSDM in a number of experiments, where we consider µa-only, µ′

s-only and
simultaneous µa and µ′

s reconstructions. For the summary of method descriptions, we refer
to table 1.

In our experiments, we set the angular frequency ω = 2π × 100 MHz, and a = 1, except
for the simultaneous absorption and reduced scattering imaging case, where we use two
frequencies: ω1 = 300 MHz and ω2 = 500 MHz. Note that for the µa-only simulation, zero-
mean Gaussian noise with standard deviation equal to 1% of the average of the measurements
was added to the measurements. Similarly, for the µs-only case, we added zero-mean Gaussian
noise with standard deviation equal to 0.5% of the average of the measurements. For the
simultaneous µa and µ′

s imaging, we considered additive zero-mean Gaussian noise with
standard deviation equal to 5% of the average of the measurements. For the inverse problem
formulation, we chose the following zeroth-order Tikhonov regularizer with the regularization
parameter α = 10−2:

�(η, ν) = ‖η‖2
V

µa
Ne

+ ‖ν‖2

V
µ′

s
Ne

, (4.36)

for η ∈ V
µa

Ne
and ν ∈ V

µ′
s

Ne
.

4.1. Algorithm TMODDM

In this experiment, we evaluate the performance of TMODDM, for an optical medium
whose absorption and scattering coefficient distributions are shown in figures 2(a) and (b),
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Figure 2. (a) The original µa image. The white region represents background tissue with µa value
of 0.05 cm−1, and the black region represents an anomaly with µa value of 0.2 cm−1. (b) The
original µ′

s image. The white region represents background tissue with µ′
s value of 8 cm−1, and

the black region represents an anomaly with µ′
s value of 16 cm−1. (c) 2×2 domain decomposition

of � = [0, 6] × [0, 6]. (d) The LINPACK solution of the frequency-domain diffusion equation for
a point source located at (6, 3). (e) Relative L2 error versus number of floating point operations
for one and two-level MODDM. (f) Relative L2 error versus number of floating point operations
for TMODDM with domain decompositions with the overlap region width w = 1, 2 and 3 pixels.



Two-level domain decomposition methods for diffuse optical tomography 17

respectively. The black region in figure 2(a) shows an anomaly with absorption coefficient
µa = 0.2 cm−1, where the background has an absorption coefficient µa = 0.05 cm−1.
Figure 2(b) shows the reduced scattering coefficient of the same medium, where the black
region and the background have reduced scattering coefficients µ′

s = 16 and µ′
s = 8 cm−1,

respectively. We divide the square domain � = [0, 6] × [0, 6] cm2 into 32 × 32 uniform
pixels. Next, we decompose the domain into four overlapping sub-domains with 2/3 cm of
overlap region, as shown in figure 2(c).

We consider the solution of the diffusion equation (2.1) for a point source located at (6, 3)

and compare the performance of TMODDM and the one-level DD method (MODDM) using
the following relative L2(�) error:

‖�A − �L‖L2(�)

‖�L‖L2(�)

, (4.37)

where �L is the LINPACK solution of (2.5), and �A is either the TMODDM or MODDM
solution. Figure 2(d) shows the LINPACK solution for the point source located at (6, 3).
Figure 2(e) shows the relative L2(�) error versus the number of floating point operations for
TMODDM and MODDM. We observe that TMODDM converges faster than the one-level
MODDM, with a smaller number of floating point operations.

Next, to show the effect of overlap width on the performance of TMODDM, we consider
three cases where the overlap region consists of 1, 2 and 3 pixels, respectively. Figure 2(f)
shows the relative L2(�) error versus the number of floating point operations for each overlap
width. We see that the convergence improves as the width gets larger. This verifies the
convergence result stated in (a) below subsection 3.3.

4.2. Algorithm TMSDM

In this section, we evaluate the performance of TMSDM in two sets of experiments using
simulated data. In the first experiment, we consider µa-only and µ′

s-only reconstructions and
compare TMSDM to the non-DD method. In the second experiment, we consider simultaneous
reconstruction of µa and µ′

s using TMSDM and compare the performance to that of the non-DD
method. For the description of the non-DD method, we refer to table 1.

For the forward solver, we use TMODDM with the maximum number of sub-domain
correction sweeps MF set to 3. In order to evaluate the performance of the inverse solvers
and compare TMSDM to the non-DD method, we define the following signal-to-noise-ratio
(SNR):

SNR = 20 log10
‖y‖L2(�)

‖yA − y‖L2(�)

, (4.38)

where yA is the actual optical coefficient (either µa or µ′
s) and y denotes the reconstructed

optical coefficients, obtained by using either TMSDM or the non-DD method.

4.2.1. Experiment 1. In this experiment, we consider two cases. In the first one, we
assume that the reduced scattering coefficient of the medium is known and set it to 8 cm−1,
and we reconstruct the absorption coefficient of the medium. Figure 3(a) shows the circular
heterogeneity with µa = 0.20 cm−1 embedded in a background with µa = 0.05 cm−1.

In the second case, we assume that the absorption coefficient of the medium is known and
is set to µa = 0.05 cm−1 and we reconstruct the reduced scattering image. Figure 4(a) shows
the circular heterogeneity with µ′

s = 16 cm−1 embedded in a background with µ′
s = 8 cm−1.
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Figure 3. The set-up and the results regarding the µa-only reconstruction. (a) The original µa

image and the source-detector configuration. The white region represents background tissue with
µa value of 0.05 cm−1, and the black region represents an anomaly with µa value of 0.2 cm−1.
(b) The 2 × 2 domain decomposition and uniform 32 × 32 discretization of �. (c) The value
of the objective functional versus the number of floating point operations of the non-DD method
and TMSDM. (d) The SNR versus the number of floating point operations of the non-DD method
and TMSDM. (e) The absorption image reconstruction by the non-DD method after 12.893 × 109

number of floating point operations, with SNR = 8.174. (f) The reconstruction by TMSDM after
8.561 × 109 number of floating point operations with SNR = 9.955.
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Figure 4. The set-up and the results regarding the µa-only reconstruction. (a) The original µ′
s

image and the source-detector configuration. The white region represents background tissue with
µ′

s value of 8 cm−1, and the black region represents an anomaly with µ′
s value of 16 cm−1. (b) The

2×2 domain decomposition and uniform 32×32 discretization of �. (c) The value of the objective
functional versus the number of floating point operations of the non-DD method and TMSDM.
(d) The SNR versus the number of floating point operations of the non-DD method and TMSDM.
(e) The reduced scattering image reconstruction by the non-DD method after 13.165×109 number
of floating point operations, with SNR = 15.5. (f) The reconstruction by TMSDM after 8.373×109

number of floating point operations with SNR = 15.6.
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Figure 5. The set-up and the results regarding the simultaneous µa and µ′
s reconstruction. (a) The

original µ′
a image and the source-detector configuration. The white region represents background

tissue with µa value of 0.05 cm−1, and the black region represents an anomaly with µa value of
0.2 cm−1. (b) The original µ′

s image. The white region represents background tissue with µ′
s value

of 8 cm−1, and the black region represents an anomaly with µ′
s value of 16 cm−1. (c) The 2 × 2

domain decomposition and uniform 32 × 32 discretization of �. (d) The value of the objective
functional versus the number of floating point operations of non-DD method and TMSDM. (e) The
SNR for the absorption coefficient reconstruction versus the number of floating point operations of
non-DD method and TMSDM. (f) The SNR for the reduced scattering coefficient reconstruction
versus the number of floating point operations of non-DD method and TMSDM.
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Figure 6. The simultaneous reconstruction results of the absorption and reduced scattering
coefficients shown in figures 5(a)–(b). (a),(b): the simultaneous reconstruction of the absorption
and reduced scattering coefficients by using the non-DD method after 6.780 × 1010 number
of floating point operations with SNR (µa) = 9.346 and SNR (µ′

s ) = 13.935. (c),(d): the
simultaneous reconstruction of the absorption and reduced scattering coefficients by using TMSDM
after 2.459 × 1010 number of floating point operations, with SNR (µa) = 8.920 and SNR
(µ′

s ) = 14.899.

Figures 3(c)–(d) and figures 4(c)–(d) show the value of the objective functional and the
SNR versus the number of floating point operations. Figures 3(e), 4(e) and figures 3(f), 4(f)
show the reconstructed images using non-DD and TMSDM methods, respectively.

Figures 3–4(c) show that at a given number of floating point operations, TMSDM achieves
a lower objective functional value as compared to the non-DD method. Similarly, figures 3–
4(d) show that at a given number of floating point operations, TMSDM achieves a higher SNR
value.

For the µ′
a-only imaging, the reconstructed images shown in figures 3(e)–(f) indicate that

TMSDM provides qualitatively and quantitatively better results as compared to the non-DD
method. Note that the reconstructed µa image using TMSDM was obtained after 8.561 × 109
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floating point operations, while the image using the non-DD method was obtained after
12.893 × 109 floating point operations. Similarly figures 4(e)–(f) show the reconstructed
µ′

s images obtained after 13.165 × 109 and 8.373 × 109 floating point operations, by using
the non-DD method and TMSDM, respectively. Similar to the µa-only imaging case, these
images indicate that TMSDM outperforms the non-DD method.

4.2.2. Experiment 2. In this experiment, we test the performance of TMSDM in the
simultaneous reconstruction of absorption and reduced scattering images and show the
convergence of the algorithm experimentally.

Figure 5(a) shows an inclusion with µa = 0.20 cm−1 in a background with µa =
0.05 cm−1. Figure 5(b) shows the reduced scattering coefficient of the same medium, where
the circular inclusion corresponding to an object with µ′

s = 16 cm−1 is embedded in a
background with µ′

s = 8 cm−1. Figure 5(c) shows the domain decomposition with uniform
discretization for the forward and inverse problems.

Figure 5(d) shows the value of the objective functional versus the number of floating point
operations for both TMSDM and the non-DD method. We see that TMSDM achieves a lower
objective functional value at a lower number of floating point operations.

Figures 5(e) and (f) show the SNR value achieved by TMSDM and the non-DD method
versus the number of floating point operations, respectively for absorption and reduced
scattering images. These images indicate that TMSDM outperforms the non-DD method,
especially for the reduced scattering image. The reconstructed images shown in figure 6 are
consistent with the performance numbers given in figures 5(d)–(e) and (f). We note that the
images reconstructed by using TMSDM are obtained in 2.459 × 1010 number of floating point
operations, while the images obtained by using the non-DD method require 6.780 × 1010

number of floating point operations.

5. Conclusion

In this work, we developed two-level overlapping domain decomposition algorithms to address
the computational complexity of the forward and inverse problems associated with DOT
imaging. We used the frequency-domain diffusion equation to model NIR light propagation.
In order to address the ill-posed nature of the inverse problem, we used a nonlinear least-squares
formulation with a general Tikhonov regularization term to recover both the absorption and
scattering coefficients.

In the forward problem, we employed an overlapping domain decomposition algorithm
with a two-grid preconditioner (TMODDM), and for the nonlinear inverse problem, we used
an overlapping space decomposition algorithm with a coarse-level initiation (TMSDM). We
proved the local convergence of the TMSDM method under the conditions that lead to the
strict local convexity of the objective functional formulated for the inverse problem. For
notational brevity, we described both DD algorithms for a 2D bounded optical domain and
uniform discretization. Nevertheless, the extension of the algorithm for the 3D case and
adaptive discretization is straightforward. This requires replacing the 2D finite elements
with 3D finite elements and definition of 3D restriction (downsampling) and prolongation
(upsampling) operators for the two-level algorithms.

Note that in our inverse problem solver, measurements from all source-detector pairs are
used for each sub-domain. This accounts for the contribution of all sources to the boundary
data. Therefore, this scheme does not impose any constraints on how the image domain is
decomposed into sub-domains.
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We analysed the computational complexity of both algorithms and demonstrated their
performance in three different numerical simulations, where we considered simultaneous
absorption and reduced scattering coefficient reconstruction as well as absorption only and
reduced scattering only reconstructions. Our study shows that TMODDM provides lower
relative error than the one-level MODDM for the same floating point operations and the
relative error becomes much lower as the width of the overlapping region grows. Similarly,
TMSDM provides lower objective functional values and higher SNR than the non-DD
method for the same number of floating point operations, in all experiments including the
simultaneous absorption and reduced scattering reconstruction. If parallel computers are
used, the computational efficiency of TMSDM is expected to be further enhanced.

Finally, the local convergence properties of the algorithms do not change when they are
implemented only for a region of interest (ROI). Therefore, if an ROI is identified either by
a priori information provided by a secondary imaging modality such as magnetic resonance
or x-ray; or by a posteriori information obtained from the coarse-level solution, the optical
coefficients can be updated only in the sub-domains covering the ROI, providing further
reduction in computational requirements.
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Appendix A. The proof of theorem 1

Lemma 1. Let µ = (µa, µs) and µ̃ = µ + δµ, δµ = (δµa, δµ
′
s). If ||δµ||

V
µa
Ne

×V
µ′

s
Ne

� ε+αC�

CH CJ

for some ε > 0, then F ′′ satisfies

ε‖δµ‖
V

µa
Ne

×V
µ′

s
Ne

� (δµ)tF ′′(µ)(δµ). (A.1)

Proof. Let G and G̃ be Green’s function for the optical coefficients µ and µ̃, respectively.
Then, we get

|b|l2 =
∣∣∣∣log

(
1

2a
G̃(i : j)

)
− log

(
1

2a
G(i : j)

)∣∣∣∣
l2

=
∣∣∣∣log

( |G̃(i : j)|
|G(i : j)|

)∣∣∣∣
l2

= log

(
1 +

|(RG̃)(i : j)|
|G(i : j)|

)
� |(RG̃)(i : j)|

|G(i : j)| � CJ ‖δµ‖
V

µa
Ne

×V
µ′

s
Ne

,

where R = R1 + R2 and

R1ψ(r) =
∫

�

G(r, r ′)ψ(r ′) dr ′.

R2ψ(r) =
∫

�

∇G(r, r ′) · ∇ψ(r ′) dr ′.

For the norm boundedness of R, see [21].
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Therefore, using (2.13), (3.34), and (A.2), we get

δµtF ′′δµ = (J δµ)t (J δµ) + δµtHbδµ + αδµt�′′δµ (A.2)

� (J δµ)t (J δµ) + αδµt�′′δµ − CHδµtδµ|b| (A.3)

� (αC� − CHCJ |δµ|)δµtδµ. (A.4)

Thus, we have proved the lemma. �

The inequality (A.1) is called the local strong convexity. With this property and the
theorem in [5], we will prove theorem 1.

Proof of theorem 1. The proof of theorem 1 is based on the proof in theorem 3.1 [5].
Let µ = (µa, µ

′
s) and δµ = (δµa, δµ

′
s). Let the restrictions of V

y

Ne
, y = µa,µ

′
s to the non-

overlapping and overlapping sub-domain �p be W
p,y

Ne
and V

p,y

Ne
for p = 1, . . . , d, respectively,

such that

W
y,p

Ne
= {

x ∈ V
y

Ne
|x = 0 on �\�p

}
, (A.5)

V
y,p

Ne
= {

x ∈ V
y

Ne
|x = 0 on �\�w

p

}
, (A.6)

where y = µa,µ
′
s . Then, W

y,p

Ne
, p = 1, . . . , d are mutually disjoint, W

y,p

Ne
⊂ V

y,p

Ne
, and

V
y

Ne
= V

y,1
Ne

+ · · · + V
y,d

Ne
= W

y,1
Ne

+ · · · + W
y,d

Ne
.

Since we did not consider the coarse-level correction step in this theorem, we will use p and
d instead of p + 1 and d + 1 in (3.31). Let µn be the solution of MSDM after n sweeps of
sub-domain correction and µn+ p

d be the solution obtained by updating µn with the solution
estimates obtained on the sub-domain �w

1 , . . . , �w
p (p � d). Define

zn
p =

{
µ − µn+ p

d in �p

(0, 0) in �\�p

and en+ p

d = µn+ p

d − µn+ p−1
d ∈ V

µa,p

Ne
× V

µ′
s ,p

Ne
. Then, zn

p ∈ W
µa,p

Ne
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s ,p

Ne
and we obtain

µ − µn =
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×V
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s
Ne

=
 d∑
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‖zn
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1/2

(A.7)

and

en+ p

d = argmin F
(
µn+ p−1

d + vp

)
,

vp∈V
µa ,p

Ne
×V

µ′
s ,p

Ne

(A.8)

(A.8) implies that〈
F ′(µn+ p−1

d + en+ p

d

)
, vp − en+ p

d

〉
� 0 for all vp ∈ V

µa,p

Ne
× V

µ′
s ,p

Ne
(A.9)

where 〈 ·, ·〉 is l2 inner product in the space V
µa,p

Ne
× V

µ′
s ,p

Ne
. Using (A.1) and Taylor expansion

for F, we get

F(w) − F(v) � 〈F ′(v), w − v〉 +
ε

2
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for all v,w ∈ V
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Ne
× V

µ′
s

Ne
such that ‖v − w‖

V
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×V
µ′

s
Ne

� ε+αC�

C2
F

. Inserting w = µn+ p−1
d and

v = µn+ p

d in (A.10) and using (A.9) with vp = 0, we get

F
(
µn+ p−1

d

)− F
(
µn+ p

d

)
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� 0
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and

F(µn) − F(µn+1) �
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p=1

(
F
(
µn+ p−1

d

)− F
(
µn+ p

d

))
� ε

2
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µ′
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� 0. (A.11)

Since µ = argmin
v∈V

µa
Ne

×V
µ′

s
Ne

F (v), we get

〈F ′(µ), v − µ〉 � 0 for all v ∈ V
µa

Ne
× V

µ′
s

Ne
, (A.12)

as in (A.8). Inserting w = µn and v = µ into (A.10) and using (A.12), we get

F(µn) − F(µ) = 〈F ′(µ), µn − µ〉 +
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Finally, we obtain
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(using (A.1))

� ε
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√

F(µn) − F(µn+1)
√

F(µn) − F(µ)

(using (A.7), (A.11) and (A.13)).

Let dn = F(µn)−F(µ), then the above equation and the Cauchy–Schwarz inequality implies

dn+1 � 2(dn − dn+1) + 2
√

dn − dn+1

√
dn

�
(

2 +
1

2η

)
(dn − dn+1) + 2ηdn,
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for all η > 0. Thus, we obtain

dn+1

dn

� 4η2 + 4η + 1

6η + 1
. (A.14)

The left-hand side of (A.14) takes minimum value 8
9 < 1 when η = 1

6 . Thus we have the
following successive inequalities:

dn � 8

9
dn−1 �

(
8

9

)2

dn−2 � · · · �
(

8

9

)n

d0. (A.15)

Using the mean-value theorem, (2.13a), (3.32), (3.34a) and (A.2), we can estimate d0 as
follows:

d0 = F(µ0) − F(µ) � sup
0<θ<1

|F ′(θµ0 + (1 − θ)µ)||µ − µ0|

� C2
J |µ − µ0|2 + αC̃�|µ − µ0| � α2C2

�

C2
H

+
α2C�C̃�

CHCJ

. (A.16)

Using (A.15) and (A.16), we obtain (3.33). �
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1. Introduction

Diffuse optical tomography (DOT) in near infrared involves determining the spatially

resolved optical properties of a turbid medium from boundary measurements based on

a photon propagation model. For deep tissue, frequency domain diffusion equation

with Robin boundary condition constitutes a good model for photon propagation.

Coefficients of the diffusion equation, namely the absorption and reduced scattering

coefficients, represent the optical properties of the medium. As a result, the inverse DOT

problem involves the inversion of the associated coefficient-to-measurement operator

which maps the coefficients of the diffusion equation to the boundary measurements.

The inversion of the coefficient-to-measurement operator calls for the computation of

the Fréchet derivative of the coefficient-to-measurement operator. Thus, the Fréchet

derivative of the coefficient-to-measurement operator is an integral part of the algorithms

developed for DOT imaging.

In this work, we derive the m-th order Fréchet derivative of the coefficient-to-

measurement operator in various normed spaces for both the absorption and reduced

scattering coefficients. The Fréchet derivative of the coefficient-to-measurement operator

is related to the Fréchet derivative of the coefficient-to-solution operator, which can be

interpreted as the ratio of the perturbation in the photon density to an infinitesimal

perturbation in the optical coefficients. Similarly, the Born expansion in DOT can

be regarded as the Neumann series expansion of the perturbed photon density, given in

terms of the unperturbed photon density and the perturbation in the optical coefficients.

Hence, the Fréchet derivatives and the Born expansion are closely related. In this

respect, we first analyze the Born expansion and investigate the conditions which ensure

the convergence of the Born expansion. Next, we derive the Fréchet derivative of

coefficient-to-solution operator, and then extend our results to the Fréchet derivative of

the coefficient-to-measurement operator.

Before we give the technical details of our analysis and results, we will describe how

our work differs from the previously reported studies in the general inverse scattering

problem and particularly in DOT. In this context, we present an extensive literature

survey on Born expansion and Fréchet derivatives, respectively, and give an outline of

our analysis and findings regarding the Born expansion and Fréchet derivatives in DOT.

1.1. Born Expansion

In this section, we describe the related work and the contribution of our work in the

area of Born expansion.

We consider the following aspects in our Born expansion analysis: First, we study

the validity of the Born expansion by deriving bounds of the integral operators in the

Born expansion. In this context, we first show the conditions to ensure the existence
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of the Born expansion. Second, we show the restrictions on the optical coefficients

that guarantee the convergence of the m-th order Born approximation and compute the

error in the m-th order Born approximation. Third, we analyze the Born expansion

not only for the perturbation of the absorption coefficient but also for the reduced

scattering coefficient. Fourth, the analysis of the Born expansion is done for the n-

dimension for any n ≥ 2. Fifth, we summarize the existence and singular properties

of the Robin function, which is the kernel of the integral operator for each term in the

Born expansion. Note that we use the term Robin function for the Green’s function of

the diffusion equation to stress that the Green’s function satisfies the (homogeneous)

Robin boundary condition.

Studies on the Born expansion in the area of quantum scattering were initiated

with the establishment of the Lippmann-Schwinger equation [9, 22]. The beam of

particles of light can be modelled by the Schrödinger equation. Then, the scattered field

due to the perturbation in the refractive index can be represented by the Lippmann-

Schwinger equation, which is an implicit integral representation of the scattered field

solution. Using the Lippmann-Schwinger equation recursively, the formal Neumann

series expansion of the scattered field with respect to the incident wave gives the Born

expansion. However, in quantum mechanics, there are relatively few systems which are

of physical interest and/or can be solved exactly. Therefore, approximation methods

such as Born approximation are widely used [4, 30, 32, 34]. We note that acoustic

scattering can also be considered as a case of quantum scattering, since the Helmholtz

equation is a special case of the Schrödinger equation.

The analysis, in this paper, for the validity of the Born expansion and the error

in the Born expansion differs from the analysis in quantum and acoustic scattering

[3, 4, 6, 17, 18, 23, 29, 30, 32, 34, 35, 37] in the following aspects: First, in these

studies, the scattered wave is considered in an unbounded domain with spatially

constant background properties of interest. Thus, the associated Green’s function is

explicitly known. However, we consider the Robin boundary condition for arbitrary

bounded domains and spatially varying background optical coefficients. Therefore, the

existence, singularities, and other properties of the Robin function are not known a

priori. Although the Green’s function of the diffusion equation in specific geometries

with specific optical coefficients is known analytically [24, 25, 26, 27], to the best of

our knowledge, studies on the existence and singularities of the Robin function for

arbitrary geometries in which the Robin function is not known analytically, have not

been reported. Thus, we study the singularity properties of the Robin function using

[5, 36], based on the definition of the Robin function given in [28]. Second, in quantum

and acoustic scattering theory, only the perturbation in the refractive index, which

corresponds to the absorption coefficient in DOT, has been considered. In this work, we

consider the perturbation with respect to both the absorption and reduced scattering
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coefficients. We note that the analysis of the Born expansion for the reduced scattering

coefficient requires more sophisticated mathematical machinery as compared to the

analysis of the Born expansion for the absorption coefficient. This complication results

from the presence of the gradients of the Robin function and the unperturbed photon

density in the Born expansion for the reduced scattering coefficient. Third, we establish

a relationship between the Born expansion and the Fréchet derivatives of the coefficient-

to-solution operator.

1.2. Fréchet derivative

In this section, we describe the related work and the contribution of our paper in the

area of Fréchet derivatives.

A number of studies on the derivation of the Fréchet derivatives have been reported

in inverse acoustic scattering problem [3, 11, 16, 31] and in electrical impedance

tomography [12, 13]. In these studies, Fréchet derivatives are either given by the

solution of partial differential equations using weak formulation [3, 11, 12, 16] or by the

solution of integral equation systems [13, 31]. Although these studies, for example [3], is

potentially applicable to DOT, most researchers in DOT use the perturbation method

and the first order Born approximation to approximate the first order Fréchet derivative

[2]. The derivation of the first order Fréchet derivative is straightforward; however the

higher order terms in the Born expansion are usually discarded regardless of the relative

magnitude of the higher order terms with respect to the first order terms. Ye et. al

[38] derived the Fréchet derivative of the coefficient-to-measurement operator using the

perturbation method without using the first-order Born approximation. However, in

that work, the Robin function is assumed to be H1 bounded, which is not valid. In

contrast, in our work, we showed and used the argument that the convolution of the

Robin function and any H1 function is H1 bounded [5, 36]. Dierkes et. al [7] derived

the first order Fréchet derivative for DOT, where a Dirichlet boundary problem with

zero source is considered for the derivation, which is different from the model used in

this paper.

In this paper, we first derive the Fréchet derivatives of the coefficient-to-solution

operator, then we obtain the Fréchet derivatives of the coefficient-to-measurement

operator by change of variables. The approach followed in deriving the Fréchet

derivatives in this paper differs from the approaches in [2, 3, 7, 11, 12, 13, 16, 31, 38] in

the following aspects: First, we compute the Fréchet derivatives of any order. Second,

we use various normed spaces for the definition of the Fréchet derivatives, such as

Lebesque space Lp, 1 ≤ p ≤ ∞, the first order Sobolev space W 1, 1 ≤ p ≤ ∞, and

the weighted Sobolev space W 0,∞
r,log for two dimension and W 0,∞

r,2 for dimension higher

than 2, where r is a point in the domain of interest. Third, we consider both the
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absorption and the reduced scattering coefficients for the derivation of the Fréchet

derivatives. Fourth, we show that the m-th order Fréchet derivatives are equal to

the m-th order terms in the Born expansion up to constant multiples, whereas other

approaches [3, 7, 11, 12, 13, 16, 31], do not provide the higher order derivatives. Even

though the approaches in [3, 7, 11, 12, 13, 16, 31] can be used to derive the higher

order derivatives, the approach presented in this paper has several advantages over the

previous approaches: First, we compute the m-th order Fréchet derivatives, which can

not be easily derived by the previous approaches, by showing that they are equal to m!

times the m-th term in the Born expansion. Although Born expansion is well-known in

quantum and acoustic scattering and DOT [3, 6, 17, 18, 23, 25, 29, 35, 37], to the best of

our knowledge, there has not been a study to relate the higher order Fréchet derivatives

to the terms in Born expansion. Note that the inclusion of the higher order Fréchet

derivatives improves the resolution of the reconstructed optical coefficients of DOT [25]

and the bounds of the higher order Fréchet derivatives can be utilized in the analysis of

the numerical DOT reconstruction algorithms [21]. Second, the recursive structure of

the Born expansion makes it possible to bound the m-th order Fréchet derivative in a

variety of normed spaces by the m-the multiple of the bound of the first order Fréchet

derivative.

The rest of our paper is organized as follows: In section 2, we provide a

mathematical formulation of DOT. The definition, existence, and singular properties

of the Robin function are given in Section 3. The validity of the Born expansion and

the error analysis due to the m-th order Born approximation is given in Section 4.

In Section 5, we show that the Fréchet derivatives of coefficient-to-solution operator

are given by the terms in the Born expansion. Section 6 summarizes our results and

conclusion. The paper concludes with two appendices providing proofs for Lemmas 3.3

and 4.6.

2. Photon Diffusion Equation in Frequency Domain

We model the propagation of light in bounded turbid media by the photon diffusion

equation with Robin boundary condition. In the frequency domain, the photon diffusion

equation is given by:

−∇ · (κ∇Φ) + (µa +
iω

c
)Φ = q in Ω (2.1a)

Φ + 2aν · (κ∇Φ) = 0 on ∂Ω (2.1b)

where Ω is a Lipschitz domain in Rn, n = 2, · · · ,, ∂Ω is its boundary, c is the speed of

light, ω is the angular frequency of the source q, ν is the unit outward normal vector on

the boundary, Φ is the photon density, and µa, µ
′
s, and κ = 1

3(µa+µ′s)
are the absorption,
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reduced scattering, and diffusion coefficients, respectively, and the constant a accounts

for the the refraction index mismatch at the boundary, where we assume a is a constant

and κ, µa, µ
′
s are scalar functions satisfying

0 < L ≤ κ, µa, µ
′
s, a ≤ U. (2.2)

for some positive constants L and U .

Let us define the partial differential operators M and N defined on the function

space on H1(Ω) and H1/2(∂Ω), respectively, as follows:

MΨ = −∇ · (κ∇Ψ) + (µa +
iω

c
)Ψ for Ψ ∈ H1(Ω), (2.3a)

NΥ = Υ + 2aν · (κ∇Υ) for Υ ∈ H1/2(∂Ω). (2.3b)

Then, (2.1) is represented by

MΦ = q in Ω (2.4a)

NΦ = 0 in ∂Ω. (2.4b)

If the partial differential operator is with respect to r, we will use the notation Mr,Nr

along with M and N .

In the following, we show the existence and uniqueness of the weak solution of (2.1).

Proposition 2.1 Let q ∈ H−1(Ω). Then there is a unique weak solution Φ ∈ H1(Ω)

satisfying (2.1).

Proof By multiplying both sides of (2.1a) with the complex conjugate v of v ∈ H1(Ω),

integrating over Ω, and using integration by parts and (2.1b), we get the following weak

formulation:

b(Φ, v) = l(v), (2.5)

b(u, v) =

∫

Ω

κ∇u∇v +

∫

Ω

(µa +
iω

c
)uv +

1

2a

∫

∂Ω

uv,

l(v) =

∫

Ω

qv,

where c is the complex conjugate for the complex number c ∈ C. The sesquilinear form

b : H1(Ω)×H1(Ω) → C, for complex number space C, satisfies

<(b(u, u)) ≥ L ‖|∇u|‖2
L2(Ω) ≥ CL ‖u‖2

H1(Ω) , (2.6a)

|b(u, v)| ≤
(
U +

ω

c

)
‖u‖H1(Ω) ‖v‖H1(Ω) +

1

2a
‖u‖L2(∂Ω) ‖v‖L2(∂Ω)

≤
(

U +
ω

c
+

1

2a

)
‖u‖H1(Ω) ‖v‖H1(Ω) , (2.6b)

|l(v)| ≤ ‖q‖H−1(Ω) ‖v‖H1(Ω) , (2.6c)
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where <(z) stands for the real part of complex valued function z. The last inequality

in (2.6a) comes from Poincare lemma and the last inequality in (2.6b) comes from the

trace formula. Using (2.6), there is a unique solution of (2.5) by Lax-Milgram lemma

[10]. ¤

In the rest of this paper, we will consider two cases i) q ∈ H−1(Ω), and ii) q is

a Dirac delta function, i.e. q = δ(· − r0), r
0 ∈ Ω. Proposition 2.1 shows that when

q ∈ H−1(Ω), we get Φ ∈ H1(Ω). The solution of (2.1) when q = δ(· − r0) is called the

Robin function. Dirac Delta function is not contained in H−1(Ω), since it is contained

in Hs(Ω) if and only if s < −n
2

by [8]. Thus, we can not conclude from Proposition

2.1 that the Robin function is contained in H1(Ω). Rigorous definitions of the Dirac

Delta function and the Robin function require the use of distribution theory [14, 15].

To avoid technicalities involved in the distribution theory, we shall follow the concepts

in [28] and use Levi functions to develop a rigorous definition of the Robin function.

3. The Robin function

The solution of (2.3a) when q(·) = δ(· − r0) is called the Green, Neumann, or Robin

function depending on whether the operator N is Φ, κ∂Φ
∂ν

, or (2.3b), respectively.

Sometimes Green, Neumann, and Robin functions are simply called the Green function

without any regard to the boundary conditions. In this paper, however, we will use the

term Robin function.

First, we introduce the following function H which is associated with the definition

of Levi functions and the Robin function.

H(r, r′) =

{
1

(n−2)ωnκ(r′) |r − r′|2−n n ≥ 3
1

ω2κ(r′) log( 2d
|r−r′|) n = 2,

(3.7)

where r, r′ ∈ Rn, ωn is the hypersurface area of the unit sphere in Rn, and d =

supr1,r2∈Ω |r1 − r2|. The function H satisfies

∇r · (κ(r′)∇rH(r, r′)) = 0 for r ∈ Ω \ {r′}. (3.8)

We will discuss other relevant properties of the function H at the end of Section 3.1,

after introducing some function spaces containing H(r, ·) and H(·, r).

3.1. Function spaces

In this section, we will introduce Sobolev spaces and weighted Sobolev spaces and show

the boundedness of the function H, which is closely related to the boundedness of the

Robin function. To simplify our notation, for the rest of this paper, we will drop Ω from

the notation of the function spaces. For example, we will use L1 instead of L1(Ω) for
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integrable functions on Ω. Let us define multi index β = (β1, β2, · · · , βn) for nonnegative

integers βi, i = 1, · · · , n, such that |β| = β1 +β2 + · · ·+βn, and Dβφ = ∂|β|
∂β1r1 ∂β2r2 ··· ∂βnrn

.

In the following, we introduce the Sobolev spaces and the associated norms given

by [1]:

Lp = {φ ∈ L1| ‖φ‖Lp :=

(∫

Ω

|φ|p
)1/p

≤ ∞},

W k,p = {φ ∈ Lp| ‖φ‖W k,p :=




k∑

l=0

∑

|β|=l

∥∥Dβφ
∥∥p

Lp




1/p

≤ ∞}

where k = 1, 2, · · · , p ≥ 1 and

L∞ = {φ ∈ L1| ‖φ‖L∞ = sup φ ≤ ∞},
W k,∞ = {φ ∈ L∞| ‖φ‖W k,∞ = max

l=0,···,k
max
|β|=l

∥∥Dβφ
∥∥

L∞ ≤ ∞}.

W k,p and W k,∞ are Banach spaces and W k,∞ ⊂ W k,p ⊂ W k,q ⊂ W k,1 for p ≥ q ≥ 1,

since Ω is bounded. In particular, W k,2 is a Hilbert space and we denote it by Hk and

W 0,p := Lp is called Lebesque space.

Similarly, the weighted Sobolev spaces W k,∞
r0,α and W k,∞

r0,log, for r0 ∈ Ω, a real number

α, and the associated norms are given by:

W k,∞
r0,α = {φ| ‖φ‖W k,∞

r0,α
:= max

l=0,···,k
max
|β|=l

∥∥|r − r0|n−α+lDβφ
∥∥

L∞ < ∞} (3.9a)

W k,∞
r0,log = {φ| ‖φ‖W k,∞

r0,log

:= max

(
max

i=1,···,n

∥∥∥∥
∂φ

∂ri

∥∥∥∥
W k−1,∞

r0,n

,

∥∥∥∥
φ(·)

log(2d/| · −r0|)

∥∥∥∥
L∞

)
< ∞} (3.9b)

Then, the following holds for W k,∞
r0,α ,W k,∞

r0,log and the Sobolev spaces:

W k,∞ ⊂ W k,∞
r0,log,

W k,∞
r0,α * W k,1, if α− k ≤ 0,

W k,∞ ⊂ W k,∞
r0,α ⊂ W k,1, if α− k > 0,

W k,∞ = W k,∞
r0,α , if α− k ≥ n,

for k = 0, 1, 2, · · ·.
The following proposition shows that W k,∞

r0,α and W k,∞
r0,log are Banach spaces.

Proposition 3.1 W k,∞
r0,α and W k,∞

r0,log for k = 0, 1, 2, · · · are Banach spaces with norms

given in (3.9a) and (3.9b), respectively.
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Proof We can verify that ‖·‖W k,∞
r0,α

is a norm by using the definition of the norm

‖·‖W k,∞ as follows: Let φ ∈ W k,∞
r0,α , then (r − r0)

n−α+|β|Dβφ(r) ∈ L∞ for |β| ≤ k.

Thus, triangular inequality in W k,∞
r0,α comes from the triangular property in L∞. If

‖φ‖W k,∞
r0,α

= 0, then φ(r) = 0 for r 6= r0, which means that φ = 0 almost everywhere in

Ω. ‖cφ‖W k,∞
r0,α

= |c| ‖φ‖W k,∞
r0,α

can be derived in a straightforward manner. Thus, W k,∞
r0,α

is a normed space. Assume that {φp}p=1,··· is a Cauchy sequence in W k,∞
r0,α , that is,

{(r− r0)
n−αφp}p=1,··· ∈ W k,∞. Since W k,∞ is a Banach space, there is a convergent sub-

sequence {φpl
}l=1,··· and ψ ∈ W k,∞ such that ‖(r − r0)

n−αφpl
− ψ‖W k,∞ → 0 as l →∞,

i.e. ‖φpl
− (r − r0)

α−nψ‖W k,∞
r0,α

→ 0 as l → 0. Since (r − r0)
α−nψ ∈ W k,∞

r0,α , we have

proved that W k,∞
r0,α is complete, and thus is a Banach space. Using a similar argument,

it is straightforward to prove that W k,∞
r0,log are Banach spaces using log( 2d

|r−r0|) ≥ log 2 for

all r, r0 ∈ Ω. ¤

For further information about the weighted Sobolev spaces, see [20]. Noting that

H(r′, ·) has singularities only at r′ with order O(| · −r′|2−n), we get the following

properties of the function H(·, r′) :

H(·, r′) ∈ C∞(Rn \ {r′}), (3.10a)

H(·, r′) ∈ W k,p if and only if 1 ≤ p <
n

n + k − 2
, (3.10b)

H(·, r′) ∈ W 2,∞
r′,2 , n = 3, 4, · · · , (3.10c)

H(·, r′) ∈ W 2,∞
r′,log, n = 2, (3.10d)

∂H(·, r′)
∂ri

∈ W 0,∞
r′,1 , i = 1, · · · , n, (3.10e)

∂2H(·, r′)
∂ri∂rj

∈ W 0,∞
r′,0 , i, j = 1, · · · , n. (3.10f)

Following (3.10b), we can write

H(·, r′) ∈ Lp if and only if 1 ≤ p < ∞ when n = 2 (3.11a)

H(·, r′) ∈ W 1,p if and only if 1 ≤ p < 2 when n = 2 (3.11b)

H(·, r′) ∈ Lp if and only if 1 ≤ p < 3 when n = 3 (3.11c)

H(·, r′) ∈ W 1,p if and only if 1 ≤ p <
3

2
when n = 3 (3.11d)

H(·, r′) /∈ W 2,p for n = 2, 3, · · · (3.11e)

By simple computation, we can obtain the following bounds for H instead of (3.10c)-

(3.10f):

‖H(·, r)‖W 0,∞
r,2

, ‖H(r, ·)‖W 0,∞
r,2

≤ 1

(n− 2)ωnL
if n = 3, 4, · · · (3.12a)
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‖H(·, r)‖W 0,∞
r,log

, ‖H(r, ·)‖W 0,∞
r,log

≤ 1

ω2L
if n = 2 (3.12b)

∥∥∥∥
∂H(·, r′)

∂ri

∥∥∥∥
W 0,∞

r′,1

,

∥∥∥∥
∂H(r′, ·)

∂ri

∥∥∥∥
W 0,∞

r′,1

≤ 1

ωnL
(3.12c)

∥∥∥∥
∂2H(·, r′)

∂ri∂rj

∥∥∥∥
W 0,∞

r′,0

,

∥∥∥∥
∂2H(r′, ·)

∂ri∂rj

∥∥∥∥
W 0,∞

r′,0

≤ n

ωnL
(3.12d)

for all i, j = 1, · · · , n. Note that if κ is sufficiently smooth, (3.10) and (3.12) hold for

H(r, ·) as well.

3.2. Levi function and Robin function

In this section, we provide precise definitions of the Robin function and investigate the

properties of the Robin function. To do that, the definitions and properties of the Levi

function will be introduced following the approaches in [28].

Definition 3.2. [Levi function] A function L(r, r′), r, r′ ∈ Ω is called a Levi function if

L(·, r′) ∈ C2(Ω \ {r′}), and L(·, r′)−H(·, r′) ∈ W 2,∞
r′,2+λ for some constant λ > 0, where

λ is the order of the Levi function.

Note that H(r, r′) is a Levi function, and H(r′, r) is also a Levi function of order 1 if

κ ∈ W 2,∞. Thus, if L(r, r′) is a Levi function of order λ, then L(r′, r) a Levi function of

order min(λ, 1). Before introducing the properties of the Levi function in the following

lemma, let us state some known results.

Let K(r, ·) ∈ W 0,∞
r,α , α > 0 and

u(r) =

∫

Ω

K(r, r′)φ(r′)dr′.

Then the following facts are known:

• When K(r, ·) ∈ W 0,∞
r,α , α > 0, there exists a constant C1 = C1(α, p, q) which depends

on α, p and q such that the following holds [36]:

‖u‖Lq ≤ C1(α, p, q) sup
r∈Ω

‖K(r, ·)‖W 0,∞
r,α

‖φ‖Lp

for 0 < α <
n

p
≤ α +

n

q
. (3.13)

If K is a Levi function, then we can take α ≤ 2 for n ≥ 3 and α < 2 for n = 2,

and if K is a derivative of a Levi function, we can take α ≤ 1. However, if K is a

second derivative of a Levi function, we must choose α ≤ 0 and hence can not use

(3.13).
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• When the kernel K is a Levi function and p ≤ n
2
, the maximum value of q in (3.13)

is taken as follows :

‖u‖
L

np
n−2p

≤ C1(2, p) sup
r∈Ω

‖K(r, ·)‖W 0,∞
r,2

‖φ‖Lp for p <
n

2
(3.14a)

‖u‖
L

n
ε
≤ C̃1(ε)d

ε sup
r∈Ω

‖K(r, ·)‖W 0,∞
r,2−ε

‖φ‖Lp for p =
n

2
(3.14b)

by taking α = 2 for p < n
2

and α = 2−ε for p = n
2

where ε is some constant between

0 and 2, C1(α, p) = C1(α, p, np
n−αp

), and C̃1(ε) = C1(α− ε, n
2
, n

ε
).

• When K is a Levi function and p > n
2
, we have the following inequality:

‖u‖C0 ≤ C2(p) sup
r∈Ω

‖K(r, ·)‖W 0,∞
r,2

‖φ‖Lp for p >
n

2
, (3.15)

where C2(p) is a constant depending on p [36].

• When K = ∂2H
∂ri∂rj

, there exists a constant C3 [5]:

‖u‖Lp ≤ C3

L
‖φ‖Lp . (3.16)

Although the constants in this paper may depend on n, we will neglect this dependence

on n unless it is needed. Using (3.13) and (3.16), we obtain the following lemma about

the properties of the Levi function. Note that these are also the properties of the Robin

function.

Lemma 3.3 Let L(·, r′) be a Levi function of order λ > 0 and assume κ ∈ C0,λ and

∂Ω ∈ C1,λ. Let ψ ∈ Lp, p ≥ 1 and v be given by

v(r) =

∫

Ω

L(r, r′)ψ(r′)dr′. (3.17)

Then, ∂v
∂ri

, i = 1, · · · , n are absolutely continuous on one-dimensional line parallel to

ri-axis, ∂2v
∂ri∂rj

∈ Lp, i, j = 1, · · · , n, and the following bounds hold:

‖v‖Lp ≤ C1(min

(
n

p
, 2

)
, p, p) sup

r∈Ω
‖L(r, ·)‖W 0,∞

r,2
‖ψ‖Lp n ≥ 3, (3.18a)

‖v‖Lp ≤ C1(min

(
2

p
, 2

)
− ε, p, p) sup

r∈Ω
‖L(r, ·)‖W 0,∞

r,2
‖ψ‖Lp

n = 2, 0 < ε < 2, (3.18b)∥∥∥∥
∂v

∂ri

∥∥∥∥
Lp

≤ C1(min

(
n

p
, 1

)
, p, p) sup

r′∈Ω

∥∥∥∥
∂L(r′, ·)

∂ri

∥∥∥∥
W 0,∞

r′,2

‖ψ‖Lp

i = 1, · · · , n, (3.18c)∥∥∥∥
∂2v

∂ri∂rj

∥∥∥∥
Lp

≤
[
C1(λ, p, p) sup

r′∈Ω

∥∥∥∥
∂2(L−H)(r′, ·)

∂ri∂rj

∥∥∥∥ +
C3

L
+

1

nL

]
‖ψ‖Lp

i, j = 1, · · · , n, (3.18d)
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where C1 and C2 are introduced in (3.13) and (3.15), respectively. Furthermore, the

following equations hold:

∂v

∂ri

(r) =

∫

Ω

∂L

∂ri

(r, r′)ψ(r′)dr′, (3.19a)

∂2v

∂ri∂rj

(r) = − 1

nκ(r)
ψ(r) + lim

ε→0

∫

Ω\B(x,ε)

∂2L

∂ri∂rj

(r, r′)ψ(r′)dr′, (3.19b)

Mrv(r) = −ψ(r) +

∫

Ω

MrL(r, r′)ψ(r′)dr′. (3.19c)

If v ∈ W 2,p, then

v(r) =

∫

Ω

(v(r′)Mr′L(r, r′)−Mv(r′)L(r, r′)dr′

+

∫

∂Ω

(N v(r′)L(r, r′)− v(r′)NrL(r, r′))dS(r′). (3.20)

Proof : See Appendix A. ¤

Definition 3.4 [Robin function] A Levi function R of order λ > 0 which is a solution

of the equations

MrR(r, r′) = 0 for r ∈ Ω \ {r′} (3.21a)

NrR(r, r′) = 0 for r ∈ ∂Ω \ {r′} (3.21b)

is called a Robin function. Note that Mr and Nr are the complex conjugate operators

for Mr and Nr, respectively.

A few existence theorems of Robin functions can be found in Section 19 and Section

22 in [28]. For the rest of the paper, we assume that the Robin function exists for

Ω, κ, and µa. Note that if the Robin function exists, it is unique. A Levi function

which satisfies (3.21a) but not necessarily (3.21b), is called the fundamental solution.

If κ ∈ C2,λ and µa ∈ C0,λ, there exist fundamental solutions for M in Ω by Theorem

19.VIII and Section 22 in [28]. However, even though fundamental solutions exist, these

solutions are not unique. For example, H is a fundamental solution for (2.1) when

µa = 0, ω = 0, and κ is a constant.

In the following, we investigate the properties of the Robin function.

Lemma 3.5 Let R(·, r′) be a Robin function of order λ > 0, κ ∈ C0,λ, and ∂Ω ∈ C1,λ.

Let ψ ∈ Lp, p ≥ 1, and v be given by

v(r) =

∫

Ω

R(r, r′)ψ(r′)dr′. (3.22)
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Then (3.18), (3.19), and (3.20) hold replacing the Levi function L with the Robin

function R. Furthermore, we get the following equations for v with the Robin function

as the kernel:

Mrv(r) = −ψ(r), (3.23a)

v(r) = −
∫

Ω

R(r, r′)Mv(r′)dr′ +
∫

∂Ω

R(r, r′)N v(r′)dS(r′),

if v ∈ W 2,p, (3.23b)

v(r) =

∫

Ω

R(r, r′)q(r′)dr′ if v satisfies (2.4) and q ∈ Lp, (3.23c)

R(r, r′) = R(r′, r). (3.23d)

Proof (3.18), (3.19), and (3.20) hold because a Robin function is also a Levi function.

(3.23a) is derived by using the definition of the Robin function and (3.19c). Using (3.20),

we derive (3.23b) and (3.23c). (3.23d) is induced from the fact that the adjoint operator

of M is the complex conjugate of M and Theorem 10.I. in [28]. ¤

4. Born expansion

In this section, we first define the Born expansion in the normed spaces introduced

in Section 3.1 and discuss the validity of the Born expansion. Next, we compute the

error in the m-th order Born approximation using the inequalities developed in Section

3.2. In Section 4.1, we analyze the Born expansion when both the absorption and the

diffusion coefficients are perturbed. Similar analysis is applied to the Born expansion

when both the absorption and reduced scattering coefficient are perturbed. In Section

4.2., we analyze the Born expansion when the diffusion coefficient is fixed and only the

absorption coefficient is perturbed.

Assume that (κ, µa) is changed into (κ̃, µ̃a), and let δκ = κ̃−κ, δµa = µ̃a−µa, and

δκ = 0 in some neighborhood of ∂Ω. Let the solution of (2.1) for the optical coefficients

(κ̃, µ̃a) be Φ̃ such that

−∇ · (κ̃∇Φ̃) + (µ̃a +
iω

c
)Φ̃ = q in Ω, (4.24a)

Φ̃ + 2aκ̃
∂Φ̃

∂ν
= 0 on ∂Ω. (4.24b)

Inserting κ̃ = κ + δκ and µ̃a = µa + δµa into (4.24), we get

−∇ · (κ∇Φ̃) + (µa +
iω

c
)Φ̃ = q +∇ · (δκ∇Φ̃)− δµaΦ̃ in Ω, (4.25a)

Φ̃ + 2aκ
∂Φ̃

∂ν
= 0 on ∂Ω. (4.25b)
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Using (3.23c), Φ̃ can be represented by

Φ̃(r)− Φ(r) = (RΦ̃)(r), (4.26)

where

(RΨ)(r) = R(δκ, δµa)Ψ(r) = (R1Ψ)(r) + (R2Ψ)(r),

(R1Ψ)(r) = R1(δµa)Ψ(r) = −
∫

Ω

δµa(r
′)R(r, r′)Ψ(r′)dr′,

(R2Ψ)(r) = R2(δκ)Ψ(r) = −
∫

Ω

δκ(r′)∇R(r, r′)∇Ψ(r′)dr′.

Note that in the derivation of (4.26), (3.23c) was used. Thus, (4.26) holds when Φ̃ ∈ Lp.

Since H1 ⊂ L2 and the Robin function is contained in Lp for all p ≥ 1, (n = 2) and

1 ≤ p < n
n−2

, (n ≥ 3), where n is the space dimension, (4.26) holds at least for the

Robin function and H1 functions. Using (4.26) recursively, we obtain the formal Born

expansion:

Φ̃ = Φ(0) + Φ(1) + Φ(2) + · · ·+ Φ(m) + Φ̃(m+1), (4.27)

where

Φ(0) = Φ,

Φ(1) = RΦ

Φ(2) = RRΦ

· · ·
Φ(m) = RmΦ

Φ̃(m+1) = Rm+1Φ̃.

The formal expansion (4.27) exists if and only if RkΦ, k = 1, · · · ,m is defined. We

provide the following definition related with the expansion (4.27).

Definition 4.1[m-th order representation and infinite order representation with index M ]

The integral operator R has an m-th order representation

B0 → B1 → B2 → B3 → · · · → Bm. (4.28)

if there are normed spaces Bk, k = 0, 1, · · · ,m such that R(Bk−1) ⊂ Bk for all

k = 1, · · · , m.

We call that the operator R has an infinite order representation with an index M

B0 → B1 → B2 → B3 → · · · → BM → BM → · · · (4.29)

if there are M + 1 normed spaces B0, B1, · · · , BM such that R(Bk−1) ⊂ Bk for all

k = 1, · · · , M .
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If R has m-th order representation, we define EmΦ and FmΦ as follows:

EmΦ = Φ(0) + Φ(1) + Φ(2) + · · ·+ Φ(m−1) + Φ̃(m) (4.30a)

FmΦ = Φ(0) + Φ(1) + Φ(2) + · · ·+ Φ(m−1) + Φ(m). (4.30b)

If the operator R has m-th order representation, then

E1 = E2 = · · · = Em, EmΦ = Φ̃. (4.31)

by (4.27). If R has infinite order representation with an index M , then (4.31) holds for

all m ≥ 1. If we define E∞Φ as

E∞Φ = Φ(0) + Φ(1) + Φ(2) + · · ·+ Φ(m−1) + Φ(m) + · · · , (4.32)

then E∞Φ ∈ BM and we can easily show that

E∞ = E1 = · · · = Em = · · · , E∞Φ = Φ̃ (4.33)

Furthermore, if the operatorR has an infinite order representation, we have the following

proposition:

Proposition 4.2 Assume that the operator R has an infinite order representation with

an index M . If {FmΦ}m=M,M+1,··· converges, the limit is E∞Φ ∈ BM . The necessary

and sufficient condition for FmΦ,m = M,M + 1, · · · to converge to E∞Φ is

lim
k→∞

∥∥∥RM+kΦ̃
∥∥∥

BM

= 0. (4.34)

The sufficient condition for (4.34) is

‖R‖BM→BM
< 1. (4.35)

Proof Since E∞Φ − FmΦ = Em+1Φ − FmΦ = Rm+1Φ̃, (4.34) is the necessary and

sufficient condition for FmΦ to converge to E∞Φ. If ‖R‖BM→BM
< 1, then

∥∥RM+kΦ
∥∥

BM
≤

∥∥Rk
∥∥

BM→BM

∥∥RMΦ
∥∥

BM

≤ ‖R‖k
BM→BM

∥∥RMΦ
∥∥

BM
→ 0 as k →∞. (4.36)

¤

Definition 4.3[m-th order Born approximation and (m-th order, infinite order) Born

expansion] FmΦ is called the m-th order Born approximation and EmΦ, E∞Φ are

called the m-th order and infinite order Born expansion, respectively. EmΦ, E∞Φ is

just called Born expansion, since they are equal by (4.33).

Using Proposition 4.2, we investigate the following questions about Born expansion

and Born approximation:
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• When does the infinite order Born expansion E∞ exist? In other words, is there an

infinite order representation with an index M for the operator R such that

B0 → B1 → B2 → B3 → · · · → BM → BM → · · · (4.37)

as in (4.29).

• Assume that there exists an infinite order representation with an index M (4.37)

for the operator R. By Proposition 4.2, (4.34) and (4.35) are the necessary

and sufficient condition and the sufficient condition, respectively, for the Born

approximations Fm to converge to the Born expansion E∞. Then, what are the

conditions on δµa and/or δκ for the operator R to satisfy (4.35)?

• Assume that Fm converges to E∞. Then, what is the error in the m-th order

Born approximation (m = 1, 2, · · ·), that is, what is the norm bound for Φ̃(m+1) =

E∞ − Fm?

Although it is possible to compute the error in the Born approximation when E∞ does

not exist or Fm does not converge to E∞, we will treat the case when E∞ exists and

Fm converges to E∞. In the following sections, we first relate R to the infinite order

representation, then we argue about the condition on the optical coefficients for the

norm of R to be less than 1. Finally, we compute the error in the m-th order Born

approximation with respect to the Born expansion.

4.1. The Born expansion when both the diffusion and absorption coefficients are

perturbed

In this section, we treat the Born expansion when both the diffusion and absorption

coefficients are perturbed. By Proposition 4.2, we need to define the operator R
recursively to define the Born expansion, which requires the definition for ∇R. The

kernel of the integral operator ∇R1 is the derivative of Robin function which is a

weakly singular kernel and contained in W 0,∞
r0,1 . However, the kernel of ∇R2 is the second

derivative of Robin function which is a hyper singular kernel and is not integrable. Note

that the treatment of integral operators with hyper singular kernels is more difficult as

compared to the treatment of integral operators with weak singular kernels [19].

To do a quantitative analysis, we first define the following bounds for the Robin

function

S(n) := sup
r∈Ω

‖R(r, ·)‖W 1,∞
r,2

, n ≥ 3, (4.38a)

S(n) := sup
r∈Ω

‖R(r, ·)‖W 1,∞
r,log

, n = 2, (4.38b)

T (n) := sup
r∈Ω

‖(R−H)(r, ·)‖W 2,∞
r,2

. (4.38c)
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Lemma 4.4 R1 and R2 are bounded with respect to W 1,p norm:

‖R1‖W 1,p→W 1,p ≤ C4 ‖δµa‖L∞ , (4.39a)

‖R2‖W 1,p→W 1,p ≤ C5 ‖δκ‖L∞ , (4.39b)

where

C4 = S(n) max

(
C1(min

(
n

p
, 2

)
, p, p), C1(min

(
n

p
, 1

)
, p, p)

)
n ≥ 3, (4.40a)

C4 = S(n) max

(
C1(2− ε, p, p), C1(min

(
2

p
, 1

)
, p, p)

)
n = 2, 0 < ε < 2,(4.40b)

C5 = C1(min

(
n

p
, 1

)
, p, p)S(n) + C1(λ, p, p)T (n) +

C3n
2

L
+

n

L
. (4.40c)

Proof Let ψ ∈ W 1,p, then by (3.18a),(3.18b), and (3.18c),
∥∥∥∥
∫

Ω

R(r, r′)δµa(r
′)ψ(r′)dr′

∥∥∥∥
Lp

≤ C1(min(n/p, 2), p, p) ‖R(r, ·)‖Lp ‖δµa‖L∞ ‖ψ‖Lp

n ≥ 3, (4.41a)∥∥∥∥
∫

Ω

R(r, r′)δµa(r
′)ψ(r′)dr′

∥∥∥∥
Lp

≤ C1(2/p− ε, p, p) ‖R(r, ·)‖Lp ‖δµa‖L∞ ‖ψ‖Lp

n = 2, 0 < ε < 2, (4.41b)∥∥∥∥
∫

Ω

∂R(r, r′)
∂ri

δµa(r
′)ψ(r′)dr′

∥∥∥∥
Lp

≤ C1(min(n/p, 1), p, p)

∥∥∥∥
∂R(r, ·)

∂ri

∥∥∥∥
Lp

‖δµa‖L∞ ‖ψ‖Lp

i = 1, · · · , n. (4.41c)

(4.39a) is derived from (4.41) by defining C4 as in (4.40a) and (4.40b). Using (3.18c),

(3.18d), and (3.23d), we get

∥∥∥∥
∫

Ω

∂R(r, r′)
∂r′i

δκ(r′)
∂ψ(r′)

∂r′i
dr′

∥∥∥∥
Lp

=

∥∥∥∥
∫

Ω

∂R(r′, r)
∂r′i

δκ(r′)
∂ψ(r′)

∂r′i
dr′

∥∥∥∥
Lp

≤ C1(min(n/p, 1), p, p)

∥∥∥∥
∂R(r, ·)

∂ri

∥∥∥∥
Lp

‖δκ‖L∞ ‖ψ‖W 1,p n ≥ 3, i = 1, · · · , n, (4.42a)

∥∥∥∥
∫

Ω

∂R(r, r′)
∂r′i

δκ(r′)
∂ψ(r′)

∂r′i
dr′

∥∥∥∥
Lp

≤ C1(2/p− ε, p, p) ‖R(r, ·)‖Lp ‖δκ‖L∞ ‖ψ‖W 1,p

n = 2, 0 < ε < 2, i = 1, 2, (4.42b)∥∥∥∥
∫

Ω

∂2R(r, r′)
∂r′i∂r′j

δκ(r′)ψ(r′)dr′
∥∥∥∥

Lp

=

∥∥∥∥
∫

Ω

∂2R(r, r′)
∂ri∂rj

δκ(r′)ψ(r′)dr′
∥∥∥∥

Lp

≤ ‖δκ‖L∞ ‖ψ‖W 1,p

(
C1(min

(
n

p
, 1

)
, p, p)S(n) + C1(λ, p, p)T (n) +

C3n
2

L
+

n

L

)
.

(4.42c)
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Using (4.42) and defining C5 as in (4.40c), we get (4.39b). ¤
Using Lemma 4.4, we state and prove the following results about Born expansion

and Born approximation when both the absorption and reduced scattering coefficients

are perturbed.

Theorem 4.5 The integral operator R has an infinite order representation with the

index M = 1 as follows:

W 1,p → W 1,p → W 1,p → · · · . (4.43)

If

C4 ‖δµa‖∞ + C5 ‖δκ‖∞ < 1 (4.44)

holds, then E∞Φ exists for the representation given in (4.43) and the m-th order Born

approximation FmΦ converges to E∞Φ for Φ ∈ W 1,p. Furthermore, the error between

Φ̃ = E∞Φ and Fm−1Φ is given as follows:∥∥∥Φ̃− FmΦ
∥∥∥

W 1,p
≤ (C4 ‖δµa‖∞ + C5 ‖δκ‖∞)m

∥∥∥Φ̃
∥∥∥

W 1,p
. (4.45)

Proof From (4.39), we derive

‖R‖W 1,p→W 1,p ≤ C4 ‖δµa‖L∞ + C5 ‖δκ‖L∞ . (4.46)

Hence (4.43) holds and (4.44) is the sufficient condition for E∞ to exist by Proposition

4.2. (4.45) holds using (4.46) and the following inequality:

Φ̃− Fm−1Φ = Φ̃(m) = RmΦ.

¤

4.2. Born expansion when only the absorption coefficient is perturbed

In this section, we will study the Born expansion and the Born approximation when

δκ = 0 and δµa 6= 0. When δκ = 0, the analysis given in Theorem 4.5 holds.

Furthermore, we can say more about the Born expansion. Since R = R1, we do not

need to treat the second or first derivative of Robin function as the kernel of the integral

operator R.

Before analyzing the Born expansion in the normed spaces in Lp, p ≥ 1, L∞,

W 0,∞
r0,log(n = 2), and W 0,∞

r0,2 (n ≥ 3) for r0 ∈ Ω, we first state some inequalities:
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Lemma 4.6 Let 0 < α1, α2 < n and r1, r2 ∈ Ω, then

i)

∫

Ω

log(2d/|r1 − r′|)dr′ ≤ (log(2) + 1)ω2d, n = 2, (4.47a)

ii)

∫

Ω

|r1 − r′|α1−ndr′ ≤ ωn
dα1

α1

, (4.47b)

iii)

∫

Ω

log(2d/|r1 − r′|) log(2d/|r2 − r′|)dr′ ≤ C6ω2d
2, n = 2, (4.47c)

iv)

∫

Ω

|r1 − r′|α1−n|r′ − r2|α2−ndr′,

≤ C7(α1, α2)ωn|r1 − r2|α1+α2−n if α1 + α2 < n, (4.47d)

≤ C8(α1, α2)ωn log(2d/|r1 − r2|) if α1 + α2 = n, (4.47e)

≤ C7(α1, α2)ωndα1+α2−n if α1 + α2 > n (4.47f)

v)

∫

Ω

|r1 − r′|α1−n log(2d/|r′ − r2|)dr′ ≤ C9(α1)ωnd
α1 , (4.47g)

where

C6 ≤ 1

4
(6(log 2)2 + 2 log 2 log 3 + log 3− log 2− 1) < 1,

C7(α1, α2) = 2n−α1−α2

[
3n−max(α1,α2)

n− α1 − α2

+
1

α1

+
1

α2

]
,

C8(α1, α2) =

[
3n−max(α1,α2) +

1

α1 log 2
+

1

α2 log 2

]
,

C9(α1) =
log 4

α12α1
+

log 4 + 1
n

n2α1
+

log 6 + 1
α1

α1

.

Proof See Appendix B. ¤
To do a quantitative analysis, let us define the following bounds for the Robin

function

U(n) := sup
r∈Ω

‖R(r, ·)‖W 0,∞
r,2

, n ≥ 3 (4.48a)

U(n) := sup
r∈Ω

‖R(r, ·)‖W 0,∞
r,log

, n = 2 (4.48b)

U(n, ε) := sup
r∈Ω

‖R(r, ·)‖W 0,∞
r,2−ε

, n ≥ 3, 0 < ε < 2. (4.48c)

With the aid of Lemma 4.6, we are able to state and prove the following inequalities for

the integral operator R1.

Lemma 4.7 We have the following norm bounds for the integral operator R1:

i) ‖R1‖Lp→Lp ≤ C1(min

(
n

p
, 2

)
, p, p)U(n) ‖δµa‖L∞ n ≥ 3, (4.49a)
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i) ‖R1‖Lp→Lp ≤ C1(
2

p
− ε, p, p)U(n) ‖δµa‖L∞ n = 2, 0 < ε < 2, (4.49b)

iii) ‖R1‖L∞→L∞ ≤ C10ωnU(n) ‖δµa‖L∞ , (4.49c)

iv) ‖R1‖W 0,∞
r,2 →W 0,∞

r,2
≤ C7(2, 2)ωnU(n) ‖δµa‖∞ n = 3, 5, 6, · · · , (4.49d)

v) ‖R1‖W 0,∞
r,2 →W 0,∞

r,2
≤ C8(2, 2)ω4U(4) ‖δµa‖∞ n = 4, (4.49e)

vi) ‖R1‖W 0,∞
r,log→W 0,∞

r,log
≤ C6 log 2ω2U(2) ‖δµa‖∞ n = 2, (4.49f)

where the constant C10 is given by

C10 = (log 2 + 1)d, n = 2 (4.50a)

C10 =
d2

2
, n ≥ 3 (4.50b)

Proof (4.49a) and (4.49c) result from (3.18a) and (3.18b), respectively. (4.49c) is

derived from (4.47a) for two-dimension and (4.47b) for n-dimension (n ≥ 3) with α1 = 2.

(4.49d) is obtained by (4.47d) and (4.47f) and using |r1 − r2| ≤ d for all r1, r2 ∈ Ω.

Similarly, (4.49e) and (4.49d) are derived from (4.47e) and (4.47g), respectively. ¤.

By using Lemma 4.7, we give the following theorem about Born expansion and

Born approximation :

Theorem 4.8 The integral operator R = R1 has the following infinite order

representation with an index M = 1 such that

Lp → Lp → Lp → Lp → · · · , p ≥ 1, (4.51a)

L∞ → L∞ → L∞ → L∞ → · · · , (4.51b)

W 0,∞
r,2 → W 0,∞

r,2 → W 0,∞
r,2 → · · · , n ≥ 3, (4.51c)

W 0,∞
r,log → W 0,∞

r,log → W 0,∞
r,log → W 0,∞

r,log → · · · n = 2. (4.51d)

Given the normed space B = Lp(p ≥ 1), L∞,W 0,∞
r,2 , or W 0,∞

r,log, define a constant

C11 = C11(B) depending on the normed space B as follows:

C11 = C11(B) =





C1(min
(

n
p
, 2

)
, p, p)U(n) if B = Lp and n ≥ 3,

C1(
2
p
− ε, p, p)U(2) if B = Lp, n = 2,

C10ωnU(n) if B = L∞,

C7(2, 2)ωnU(n) if B = W 0,∞
r,2 and n = 3, 5, 6, · · ·,

C8(2, 2)ω4U(4) if B = W 0,∞
r,2 and n = 4,

C6 log 2ω2U(2) if B = W 0,∞
r,log and n = 2,

where 0 < ε < 2 and r ∈ Ω. If the following condition

‖δµa‖∞ <
1

C11(B)
(4.52)
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holds, then E∞Φ exists for each representation given in (4.51) and the m-th order Born

approximation FmΦ converges to E∞Φ for Φ ∈ B. Furthermore, the error between

Φ̃ = E∞Φ and Fm−1Φ is given by:∥∥∥Φ̃− Fm−1Φ
∥∥∥

B
≤ (C11(B) ‖δµa‖∞)m

∥∥∥Φ̃
∥∥∥

B
. (4.53)

The proof of Theorem 4.8 is obtained by Proposition 4.2 and Lemma 4.7, which is

similar to the proof of Theorem 4.5. In Theorem 4.5 and Theorem 4.8, the same normed

space is used for the infinite order representations with an index M = 1. However, the

following theorem is another kind of infinite order representation for the operator R
with an index M 6= 1.

Theorem 4.9 The operatorR has the following infinite order representations with index

M ≥ 2 and BM = C0, where C0 is the normed space of continuous functions having the

norm ‖·‖L∞ :

L∞ → C0 → C0 → C0 → C0 → C0 → · · · for n = 2, 3, 4, · · · , (4.54a)

L
n
2k → L

n
2(k−1) → · · · → Ln/2 → L

n
ε → C0 → C0 → · · ·

if 1 ≤ p =
n

2k
and k is an positive integer, (4.54b)

Lp → L
np

n−2p → · · · → L
np

n−2lp → C0 → C0 → · · ·
for l = [

n− 2p

2p
] ≥ 0 if 1 ≤ p 6= n

2k
and k is an positive integer, (4.54c)

W 0,∞
r0,2 → W 0,∞

r0,4 → · · · → W 0,∞
r0,n−2 → W 0,∞

r0,log → C0 → C0 → · · ·
for n = 2, 4, 6, · · · , (4.54d)

W 0,∞
r0,2 → W 0,∞

r0,4 → · · · → W 0,∞
r0,n−1 → C0 → C0 → · · · for n = 3, 5, 7, · · · .(4.54e)

Let the normed space B = L∞, Lp(p ≥ 1),W 0,∞
r0,2 (n ≥ 3),W 0,∞

r0,log(n = 2). If the condition

‖δµa‖L∞ <
1

C10ωnU(n)
(4.55)

holds, then E∞Φ exists for each representation given in (4.54) and FmΦ converges

to E∞Φ for Φ ∈ B. The bounds for the error between the (m − 1)-th order Born

approximation and Φ̃ = E∞Φ are given by:

i)
∥∥∥Φ̃− Fm−1Φ

∥∥∥
C0
≤ (C10ωnU(n) ‖δµa‖L∞)m

∥∥∥Φ̃
∥∥∥

L∞
, (4.56a)

ii)
∥∥∥Φ̃− Fm−1Φ

∥∥∥
L

np
n−2mp

≤ C12(m, n, p) (U(n) ‖δµa‖L∞)m
∥∥∥Φ̃

∥∥∥
Lp

,

if m ≤ n− 2p

2p

(
np

n− 2mp
≤ n

2

)
. (4.56b)

iii)
∥∥∥Φ̃− Fm−1Φ

∥∥∥
L

n
ε
≤ C12(m, n, p)C13(ε, n) (U(n) ‖δµa‖L∞)m

∥∥∥Φ̃
∥∥∥

Lp
,
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if m− 1 =
n− 2p

2p
is an integer, (4.56c)

iv)
∥∥∥Φ̃− Fm−1Φ

∥∥∥
C0
≤ C12

(
n− 2p

2p
, p, n

)
C13C2

(n

ε

)
(C10ωn)m−n−2p

2p
−1

· (U(n) ‖δµa‖L∞)m
∥∥∥Φ̃

∥∥∥
Lp

,

if
n− 2p

2p
is an integer and m >

n− 2p

2p
, (4.56d)

v)
∥∥∥Φ̃− Fm−1Φ

∥∥∥
C0
≤ C12([

n− 2p

2p
], p, n)(C10ωn)m−[n−2p

2p
]

· (U(n) ‖δµa‖L∞)m
∥∥∥Φ̃

∥∥∥
L∞

,

if
n− 2p

2p
is not an integer and m >

n− 2p

2p
, (4.56e)

vi)
∥∥∥Φ̃− Fm−1Φ

∥∥∥
W 0,∞

r0,2m+2

≤ Πm
i=1C7(2, 2i) (ωnU(n) ‖δµa‖∞)m

∥∥∥Φ̃
∥∥∥

W 0,∞
r0,2

,

if 2m + 2 < n, (4.56f)

vii)
∥∥∥Φ̃− Fm−1Φ

∥∥∥
W 0,∞

r0

≤ Πm−1
i=1 C7(2, 2i)C8(2, n− 2) (ωnU(n) ‖δµa‖∞)m

∥∥∥Φ̃
∥∥∥

W 0,∞
r0,2

,

if 2m + 2 = n, (4.56g)

viii)
∥∥∥Φ̃− Fm−1Φ

∥∥∥
C0
≤ C6d

log 2 + 1
((log 2 + 1)dω2U(n) ‖δµa‖∞)m

∥∥∥Φ̃
∥∥∥

W 0,∞
r0

,

if n = 2, (4.56h)

ix)
∥∥∥Φ̃− Fm−1Φ

∥∥∥
C0
≤ Π

n−2
2

i=1 C7(2, 2i)C8(2, n− 2)C9(2)d2(C10ωn)m−n
2

· (ωnU(n) ‖δµa‖∞)m
∥∥∥Φ̃

∥∥∥
W 0,∞

r0,2

,

if n is even and 2m + 2 > n ≥ 4, (4.56i)

x)
∥∥∥Φ̃− Fm−1Φ

∥∥∥
C0
≤ Π

n−1
2

i=1 C7(2, 2i)d(C10ωn)m−n−1
2 (ωnU(n) ‖δµa‖∞)m

∥∥∥Φ̃
∥∥∥

W 0,∞
r0,2

,

if n is odd and 2m + 2 > n, (4.56j)

where C2 is defined in (3.15); C6, C7, C8, and C9 are defined in Lemma 4.6; C10 is defined

in Lemma 4.7; and the constants C12 and C13 are given by

C12(m, p, n) = Πm
i=1C1(2,

np

n− 2ip
)

C13(ε, n) = C̃1(ε)d
ε U(n, ε)

U(n)
.

Proof From (4.47a), (4.47b), (3.15), and using L∞ ⊂ Lp for all p ≥ 1, we get (4.56a)

through the sequence of image function spaces (4.54a). From (3.14), (3.15), and (4.56b),
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we get (4.56b)-(4.56e) from (4.54b) and (4.54c). From (4.47c)-(4.47g) and (4.56b), we

get (4.56f)-(4.56j) by (4.54d) and (4.54e). The sufficient condition (4.55) results from

(4.49c). ¤

Thus, by Theorem 4.8 and Theorem 4.9, we have investigated the three questions

related to the Born expansion and the Born approximation when only the absorption

coefficient is perturbed.

We now focus on the conditions (4.52) and (4.55). C6, C7(2, 2)(n =

3, 5, 6, · · ·), C8(2, 2)(n = 4), and C10 can be estimated by

C6 ≤ 1, (4.57a)

C7(2, 2) ≤ 2n−4

[
3n−2

n− 4
+ 1

]
, n = 3, 5, 6, 7, · · · , (4.57b)

C8(2, 2) ≤ 9 +
1

log 2
≤ 11, n = 4, (4.57c)

C10 ≤ 1.7d, n = 2, (4.57d)

C10 ≤ d2

2
, n ≥ 3. (4.57e)

If we neglect the lower order term R−H, then the approximation of U(n) is as follows:

U(n) ≈ sup
r∈Ω

|r − r0|n−2|H(r, r0)| ≤ 1

(n− 2)ωnL
, n ≥ 3 (4.58)

U(n) ≈ sup
r∈Ω

|H(r, r0)|/ log(|r − r0|/2d) ≤ 1

ωnL
, n = 2 (4.59)

Using (4.57) and (4.58), the conditions (4.52) and (4.55) for the m-th order Born

approximation to converge to the Born expansion can be changed as follows :

‖δµa‖L∞ ≤
L

1.7d
, n = 2 for (4.51b) and (4.54) , (4.60a)

‖δµa‖L∞ ≤
2(n− 2)L

d2
n ≥ 3 for (4.51b) and (4.54) , (4.60b)

‖δµa‖L∞ ≤
(n− 2)(n− 4)L

2n−4(3n−2 + n− 4)
n = 3, 5, 6, · · · , for (4.51c) , (4.60c)

‖δµa‖L∞ ≤
2L

11
n = 4, for (4.51c) , (4.60d)

‖δµa‖L∞ ≤
L

log 2
n = 2, for (4.51d) . (4.60e)

Note that all conditions in (4.60) depend on L, which is the lower bound of κ. Given

the bound of C1, a similar analysis can be obtained for the representation (4.51a) of the

Born expansion.
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5. The Frechet derivatives

In this section, we derive the Fréchet derivatives of the coefficient-to-solution and the

coefficient-to-measurement operators. We use the relationship between the Fréchet

derivatives and the Born expansion. We consider the cases where the Born expansion

has the infinite order representation with index M = 1 such that

B → B → B → · · · (5.61)

where B = W 1,p when both the diffusion and absorption coefficients are perturbed

(Theorem 4.5) and B = Lp, L∞,W 0,∞
r,2 , or W 0,∞

r,log when only the absorption coefficient is

perturbed (Theorem 4.8).

We first state the definition of the Fréchet derivative for operators defined on Banach

spaces.

Let B1 and B2 be Banach spaces and BL(B1, B2) be the Banach space of bounded

linear operators from B1 to B2 with the norm

‖Q‖ = sup
x∈B1\{0}

‖Qx‖B2

‖x‖B1

, Q ∈ BL(B1, B2). (5.62)

Definition 5.1 [The (first order) Fréchet derivative] Let P : S ⊂ B1 → B2 be an

operator from a open set S of Banach space B1 into a Banach space B2. Then, P is called

Fréchet differentiable for x ∈ S, if there is a continuous linear operator Q : B1 → B2

such that

lim
‖δx‖B1

→0

‖P (x + δx)− [P (x) + Q(δx)]‖B2

‖δx‖B1

= 0. (5.63)

The linear operator Q is called the first order Fréchet derivative, or simply the Freéchet

derivative of P and denoted by P ′(x).

Definition 5.2 [The second order Fréchet derivative] Let P ′(x) be the Fréchet derivative

of P : S ⊂ B1 → B2 for each x ∈ S. Then P ′ : S ⊂ B1 → BL(B1, B2). If P ′ is Fréchet

differentiable at x, we denote it by

P ′′(x) : B1 → BL(B1, B2), (5.64)

and call it the second order Fréchet derivative or Hessian of P at x.

Definition 5.3 [The m-th order Fréchet derivative] Higher order Fréchet derivatives are

defined recursively, for m = 3, · · · by P (m)(x) : B1 → BL(Bm−1
1 , B2) such that

lim
‖δx‖B1

→0

∥∥P (m−1)(x + δx)− [P (m−1)(x) + P (m)(x)δx]
∥∥

BL(Bm−2
1 ,B2)

‖δx‖B1

= 0,(5.65)
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where BL(B1
1 , B2) = BL(B1, B2) and BL(Bm

1 , B2) = BL(B1, BL(Bm−1, B2)).

We can also view P (m)(x) as a mapping from Bm
1 , the Cartesian product

of B1 with itself m times, to B2. Let us denote the image of P (m)(x) at m-

tuples (δx1, δx2, · · · , δxm) ∈ Bm
1 by P (m)(x)[δx1, δx2, · · · , δxm] and P (m)(x; δx) :=

P (m)(x)[δx, δx, · · · , δx].

5.1. The Frechet derivatives of the coefficient-to-solution operator

Let us define the coefficient-to-solution operator Ψ : G → B such that Ψ(x) = Φ, where

Φ ∈ B is the solution of (2.1) and x,G, B are given by:

G = L∞ × L∞, B = W 1,p, when x = (κ, µa), (5.66a)

G = L∞, B = W 1,p, when x = κ and µa is fixed, (5.66b)

G = L∞, B = Lp, L∞,W 0,∞
r,2 , or ,W 0,∞

r,log,

when x = µa and κ is fixed. (5.66c)

Let x be given. In Section 4, Rm = Rm(δx) is treated as a bounded linear operator

in BL(B, B) mapping Φ ∈ B toRm(δx)Φ ∈ B with a given δx. However, in this section,

we will interpret Rm = Rm(·)Φ as an operator in BL(Gm, B) from (δx1, · · · , δxm) ∈ Gm

with a given Φ such that

Rm(δx1, δx2, · · · , δxm)Φ = R(δx1)R(δx2) · · ·R(δxm)Φ. (5.67)

Then, by a similar analysis as in Theorem 4.5 and Theorem 4.8, we can show that the

operator RmΦ is bounded for the operator norm from Gm into B such that

‖Rm[δx1, · · · , δxm)Φ‖Gm→B ≤ C14 ‖δx1‖G · · · ‖δxm‖G ‖Φ‖B . (5.68)

where C14 = max(C4, C5), C5, and C11(B) depending on the case (5.66a), (5.66b), and

(5.66c), respectively, by Theorem 4.5 and Theorem 4.8. Note that in the Born expansion,

the m-th order term is given by Rm(δx)Φ.

Theorem 5.4. The m-th order Fréchet derivatives of the coefficient-to-solution operator

Ψ are contained in BL(Gm, B) and are given by

∂mΨ

∂xm
= m!RmΦ when x = (κ, µa) (5.69a)

∂mΨ

∂µk
aκ

m−k
= m!Rk

1Rm−k
2 Φ. (5.69b)



Born expansion and Fréchet derivatives in diffuse optical tomography 26

Proof We will prove (5.69) first. Assume x = (κ, µa). Inserting m = 2 in (5.68), we

get

‖Ψ(x + δx)− (Ψ(x) +R(δx)Φ)‖B =
∥∥∥Φ̃− (Φ +R(δx)Φ)

∥∥∥
B

=
∥∥∥R2(δx)Φ̃)

∥∥∥
B
≤

∥∥∥Φ̃
∥∥∥

B
C2

14 ‖δx‖2
G , (5.70)

for all δx ∈ G and Φ ∈ B. By the definition of the Fréchet derivative in (5.63), we get
∂Ψ
∂x

= RΦ. In this proof, we use R[x] instead of R, when it is needed to stress that the

Robin function, which is the kernel of the integral operator R, depends on x.

Next, we will prove that ∂mΨ
∂xm = m!RmΦ,m ≥ 2, by induction. Let us assume

∂kΨ
∂xk = k!RkΦ for an integer k ≤ m. Then by the definition given in (5.65)

∂k−1Ψ

∂xk−1
(x + δx) =

∂k−1Ψ

∂xk−1
(x) +

∂k−1Ψ

∂xk−1
δx + ok−1(‖δx‖G) (5.71)

or equivalently,

R(k−1)[x + δx]Φ = R(k−1)[x]Φ + kR(k)[x]δxΦ + ok−1(‖δx‖G), (5.72)

for all k ≤ m. Here ψ = ok−1(‖δx‖G) means that lim‖δx‖G→0

‖ψ‖
BL(Gk−1,W1,p)

‖δx‖G
= 0. Then

using (5.68) and (5.72)

∂m−1Ψ

∂xm−1
(x + δx) = (m− 1)!Rm−1[x + δx]Φ

= (m− 1)!(R[x] +R2[x]δx + o1(‖δx‖G))Rm−2[x + δx]Φ

= (m− 1)!(R[x] +R2[x]δx + o1(‖δx‖G))

· (Rm−2[x]Φ + (m− 1)Rm−1[x]δxΦ + om−2(‖δx‖G))

= (m− 1)!Rm−1[x]Φ + m!Rm[x]δxΦ + om(‖δx‖G)

=
∂m−1Ψ

∂xm−1
(x) + m!Rm[x]δxΦ + om(‖δx‖G). (5.73)

Using the definition of the higher order derivatives (5.65), we get ∂mΨ
∂xm (x) = m!Rm[x]Φ.

Hence, by induction argument, we have proved (5.69a). With a similar argument and

noting thatR1 is independent of δκ and thatR2 is independent of δµa, we prove (5.69b).

¤
If P is m-times continuously differentiable on S, and P (m)(x) is integrable between

any two points in S, then the Taylor’s theorem holds: For any x, x + δx ∈ S, we have

P (x + δx) = P (x) +
m−1∑
i=1

P (i)(x)

i!
δxi + Em(x + δx, x; P ), (5.74)

where

‖Em(x + δx, x; P )‖B2
≤ ‖δx‖m

B1

m!
sup

θ∈[0,1]

∥∥P (m)(x + θδx)
∥∥

BL(B
(m)
1 ,B2)

. (5.75)
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Although the statement and the proof are similar to the Taylor’s theorem in Euclidean

space, we must consider each term with respect to the operators between Banach

spaces. For the proof of (5.74), see [33]. If another operator Q is m-times differentiable,

Em(x + δx, x; Q) ≤ C ‖δx‖m
B1

, and P (x) = Q(x), then we can show that

P (i)(x) = Q(i)(x), i = 0, · · · ,m− 1. (5.76)

Let Tm := P (x) +
∑m

i=1
P (i)(x)

i!
δxi be the m-th order Taylor expansion. Then from

Lemma 4.3 and (5.76), we conclude that the m-th order Born approximation is the same

as the m-th order Taylor expansion, i.e. Tm = Fm. This fact can be used as another

proof of Theorem 5.4.

5.2. The Frechet derivatives of coefficient-to-measurement operator

In this section, we compute the Fréchet derivatives of the coefficient-to-measurement

operator Γ.

Given the photon density function Φ, which is the solution of (2.1), different type

of boundary data can be measured. Let f be any function from complex space C to C
and let Γ = f(Ψ). The Fréchet derivatives of the coefficient-to-measurement operator

Γ can be computed using the Fréchet derivatives of the coefficient-to-solution operator

Ψ by using change of variables as follows:

Γ′ = f ′(Ψ)Ψ′ = f ′(Ψ)RΦ

Γ′′ = f ′′(Ψ)(Ψ′)2 + f ′(Ψ)Ψ′′ = f ′′(Ψ)(RΦ)2 + 2f ′(Ψ)R2Φ

and

f(Ψ)(m) =
m∑

i=1

f (i)(Ψ)Am,i(RΦ,R2Φ, · · · ,R(m)Φ),m ≥ 3,

where Am,i is a polynomial of degree m and Am,i(x1, · · · , xm) is a linear combination of

monomials Πm
l=1x

jl

l with
∑m

l=1 ljl = m, if f is m times differentiable.

Most widely used functions for f are

f(x) = <(x) (5.77a)

f(x) = <(log x) (5.77b)

for some complex number x. (5.77a) is called the Born measurement and (5.77b) is

called Rytov measurement.

In the case of the Born measurements, Γ(m) = m!<(RmΦ), and in the case of Rytov

measurement, the first and second order Fréchet derivatives are given by

Γ′ = <
(RΦ

Φ

)
(5.78a)

Γ′′ = <
(−(RΦ)2

Φ2
+

2R2Φ

Φ

)
. (5.78b)
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In [21], we have proved the local convergence of a method which we call Two-level

Multiplicative Space Decomposition Method for DOT image reconstruction. In the

proof of the convergence, we have assumed that the second order Fréchet derivative of

coefficient-to-measurement operator is bounded, when Rytov measurements are used.

By using (5.70) and (5.78b), the second order Fréchet derivative is bounded by

‖Γ′′‖G2→W 1,p ≤ 3C2
14. (5.79)

6. Conclusion

In this paper, we derived the Born expansion and Frechet derivatives for the diffuse

optical tomography for arbitrary domains with Robin type boundary conditions. To

define valid Born expansion, we introduced sequences of appropriate normed spaces

such as Lebesgue spaces, Sobolev spaces, and weighted Sobolev spaces. We derived

sufficient conditions on the perturbation in the diffusion and absorption coefficients for

the convergence of the Born expansion in n dimensions, (n ≥ 2). We computed bounds

for the error in the m-th order Born approximation. Next, we showed that the m-th

order Frechet derivatives of the coefficient-to-solution operator is equal to the m! times

the m-th corresponding term in the Born expansion.

Although we only consider the boundary value problem (2.1) with Robin boundary

conditions, the analysis introduced in this paper can be easily extended to the general

second order elliptic partial differential equations with other boundary conditions.
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Appendix A. Proof of Lemma 3.3

Using W 0,∞
r,α ⊂ W 0,∞

r,α−ε for all 0 ≤ ε < α, L(r, ·) ∈ W 0,∞
r,2−ε and inserting q = p to (3.13), we

get (3.18a) with C1(min
(

n
p
− ε, 2− ε

)
, p, p). Using ∂L(r′,·)

∂ri
∈ W 0,∞

r′,1 and inserting q = p

we get (3.19a) and (3.18c) with the constant C1(min
(

n
p
, 1

)
, p, p).

We start to prove (3.19b) and (3.18d) by defining

vi,δ(r) :=

∫

Ω\B(r,δ)

∂H(r, r′)
∂ri

ψ(r′)dr′. (A.1)

Taking the derivative of vi,δ, we get

∂vi,δ

∂rj

(r) =

∫

Ω\B(r,δ)

∂2H(r, r′)
∂ri∂rj

ψ(r′)dr′ −
∫

∂B(r,δ)

∂H(r, r′)
∂ri

ψ(r′)νδ
j dS(r′)(A.2a)

= ψ(r)

∫

∂B(r,δ)

∂H(r, r′)
∂ri

νδ
j dS(r′) +

∫

Ω\B(r,δ)

∂2H(r, r′)
∂ri∂rj

ψ(r′)dr′ (A.2b)

−
∫

∂B(r,δ)

[
∂H(r, r′)

∂ri

ψ(r′) +
∂H(r′, r)

∂ri

ψ(r)

]
νδ

j dS(r′), (A.2c)

where νΩ
j and νδ

j are the j-th component of the outer normal vector with respect to ∂Ω

and ∂B(r, δ), respectively. Let us assume ψ ∈ C0,λ. Using ∂(H(r′,·)+H(·,r′))
∂ri

rj ∈ W 0,∞
r′,1+λ

the integral in (A.2c) is bounded by∣∣∣∣
∫

∂B(r,δ)

[
∂H(r, r′)

∂ri

ψ(r′) +
∂H(r′, r)

∂ri

ψ(r)

]
νδ

j dS(r′)

∣∣∣∣

≤
∫

∂B(r,δ)

∣∣∣∣
∂(H(r, r′) + H(r′, r))

∂ri

ψ(r′)

∣∣∣∣ dS(r′)

+

∫

∂B(r,δ)

∣∣∣∣
∂H(r′, r)

∂ri

∣∣∣∣ |ψ(r′)− ψ(r)| dS(r′)

≤ δλ

λ
ωn ‖ψ‖C0,λ

[‖κ‖C0,λ

nL2
+

1

nL

]
. (A.3)

Thus, by (A.3), the integral in (A.2c) goes to zero as δ goes to zero for ψ ∈ C0,λ. And

the first integral in (A.2b) is −ψ(r) 1
nκ(r)

. Letting δ go to zero, we get

∂2v

∂ri∂rj

(r) =

∫

Ω

∂2(L−H)(r, r′)
∂ri∂rj

ψ(r′)dr′ + lim
δ→0

∂vi,δ

∂rj

(r)

=

∫

Ω

∂2(L−H)(r, r′)
∂ri∂rj

ψ(r′)dr′ +
∫

Ω

∂2H(r, r′)
∂ri∂rj

ψ(r′)dr′ − ψ(r)

nκ(r)
. (A.4)

The second integral of the righthand side of (A.4) is bounded in the sense of (3.16).

Thus, we proved (3.19b). We prove (3.18d) using (3.13), (3.16), and (A.4).
∥∥∥∥

∂2v

∂ri∂rj

∥∥∥∥
Lp

≤ C1(λ, p, p) ‖ψ‖Lp sup
r′∈Ω

∥∥∥∥
∂2(L−H)(r′, ·)

∂ri∂rj

∥∥∥∥
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+
C3

L
‖ψ‖Lp +

1

nL
‖ψ‖Lp (A.5a)

Thus, we proved (3.18d) for ψ ∈ C0,λ. Extension of (3.18d) when φ ∈ Lp can be found

in [5, 28].

(3.19c) follows from (3.19a) and (3.19b). To prove (3.20), using Stokes theorem in

Ω \B(r, δ), we get∫

Ω\B(r,δ)

[v(r′)Mr′L(r, r′)− L(r, r′)Mr′v(r′)] dr′

=

∫

∂Ω

[v(r′)Nr′L(r, r′)− L(r, r′)Nr′v(r′)] dS(r′)

−
∫

∂B(r,δ)

[
v(r′)κ(r′)

∂L(r, r′)
∂ν

(r′)− L(r, r′)κ(r′)
∂v

∂ν
(r′)

]
dS(r′). (A.6)

Since v ∈ W 2,p(Ω), v ∈ W 2− 1
p
,p(∂Ω) by trace formula, each term of the second integral

of the righthand side of (A.6) has the following asymptotic behavior:
∣∣∣∣
∫

∂B(r,δ)

L(r, r′)κ(r′)
∂v

∂ν
(r′)dS(r′)

∣∣∣∣ ≤ U ‖L(r, ·)‖W 0,∞
r,2

‖v‖W 2,p (A.7a)

∣∣∣∣
∫

∂B(r,δ)

v(r′)κ(r′)
∂(L−H)(r, r′)

∂ν
(r′)dS(r′)

∣∣∣∣

≤ U ‖v‖W 2,p

∥∥∥∥
∂(L−H)(r, ·)

∂r′i

∥∥∥∥
W 0,∞

r,1+λ

δλ (A.7b)

∫

∂B(r,δ)

v(r′)κ(r′)
∂H(r, r′)

∂ν
(r′)dS(r′)

=

∫

∂B(r,1)

v

(
δ

r′ − r

|r′ − r|
)

dS

(
r′ − r

|r′ − r|
)

. (A.7c)

(A.7a) and (A.7b) go to 0 as δ goes to 0 and (A.7c) goes to v(r) as δ goes to 0 by the

mean value theorem. Thus letting δ → 0 and combining (A.6) and (A.7), we get (3.20)

interpreting the first term in (A.6) as in the sense of (3.16). ¤

Appendix B. Proof of Lemma 4.6

(4.47a) and (4.47b) are obtained easily using spherical coordinates with respect to r1.

Let us divide Ω into three regions depending on two points r1 and r2:

Ωr1 = {r′ ∈ Ω||r′ − r1| ≤ |r1 − r2|
2

}

Ωr2 = {r′ ∈ Ω||r′ − r2| ≤ |r1 − r2|
2

}

Ωc = {r′ ∈ Ω||r′ − r1| > |r1 − r2|
2

, |r′ − r2| > |r1 − r2|
2

}.
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Consider the equation (4.47c), which is decomposed as∫

Ω

log(2d/|r1 − r′|) log(2d/|r2 − r′|)dr′

=

∫

Ωr1

log(2d/|r1 − r′|) log(2d/|r2 − r′|)dr′

+

∫

Ωr2

log(2d/|r1 − r′|) log(2d/|r2 − r′|)dr′

+

∫

Ωc

log(2d/|r1 − r′|) log(2d/|r2 − r′|)dr′. (B.1)

Next, consider the first term in the righthand side of (B.1). If r′ ∈ Ωr1 , then

|r′ − r2| ≥ |r1−r2|
2

. Using this result and by change of variables with respect to the

spherical coordinates centered at r1, we get∫

Ωr1

log(2d/|r1 − r′|) log(2d/|r′ − r2|)dr′

≤ ω2 log(4d/|r1 − r2|)
∫ |r1−r2|

2

0

ρ log(2d/ρ)dρ

≤ ω2

16
log(4d/|r1 − r2|)|r1 − r2|2[2 log(4d/|r1 − r2|) + 1]. (B.2)

Likewise, ∫

Ωr2

log(2d/|r1 − r′|) log(2d/|r′ − r2|)dr′

≤ ω2

16
log(4d/|r1 − r2|)|r1 − r2|2[2 log(4d/|r1 − r2|) + 1]. (B.3)

If r′ ∈ Ωc, then |r1−r′| ≥ |r′−r2|
3

. Using this fact and by change of variables with respect

to spherical coordinates centered at r2, we get∫

Ωc

log(2d/|r1 − r′|) log(2d/|r′ − r2|)dr′

≤
∫

Ωc

log(6d/|r′ − r2|) log(2d/|r′ − r2|)dr′

≤ ω2

∫ d

0

(log 3 log(2d/ρ) + (log(2d/ρ))2)ρdρ

≤ ω2d
2

[
1

2
(log 2)2 +

1

4
(log 3− 1)(2 log 2 + 1)

]
. (B.4)

Inserting (B.2),(B.3),(B.4) into (B.1), we get (4.47c).

Returning to (4.47b),(4.47d), and (4.47e), we get∫

Ω

|r1 − r′|α1−n|r′ − r2|α2−ndr′ =
∫

Ωr1

|r1 − r′|α1−n|r′ − r2|α2−ndr′
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+

∫

Ωr2

|r1 − r′|α1−n|r′ − r2|α2−ndr′

+

∫

Ωc

|r1 − r′|α1−n|r′ − r2|α2−ndr′, (B.5)

where each term in the righthand side of (B.5) is bounded by∫

Ωr1

|r1 − r′|α1−n|r′ − r2|α2−ndr′

≤ 2n−α2|r1 − r2|α2−n

∫

Ωr1

|r1 − r′|α1−ndr′

≤ 2n−α2|r1 − r2|α2−n

∫ |r1−r2|/2

0

ρα1−nρn−1ωndρ

=
ωn

α1

2n−α1−α2|r1 − r2|α1+α2−n. (B.6)

Likewise ∫

Ωr2

|r1 − r′|α1−n|r′ − r2|α2−ndr′ ≤ ωn

α2

2n−α1−α2|r1 − r2|α1+α2−n. (B.7)

Suppose that α1 + α2 < n, then∫

Ωc

|r1 − r′|α1−n|r′ − r2|α2−ndr′

≤ 3n−α1

∫

Ωc

|r′ − r2|α1+α2−2ndr′

≤ 3n−α1

∫ ∞

|r1−r2|/2

ρα1+α2−2nρn−1ωndρ

≤ 3n−α12n−α1−α2|r1 − r2|α1+α2−n ωn

n− α1 + α2

. (B.8)

Inserting (B.6), (B.7), (B.8) into (B.5) and considering the symmetry of r1 and r2 for

(B.8), we get (4.47d). (4.47e) and (4.47f) is derived by modifying the integral area

for the third integral in (B.8) into
∫ d

|r1−r2| · and
∫ d

0
·, respectively. Finally, (4.47g) is

computed in a similar way as follows:
∣∣∣∣
∫

Ω

|r1 − r′|α1−n log(2d/|r′ − r2|)dr′
∣∣∣∣ ≤

∫

Ωr1

|r1 − r′|α1−n| log(2d/|r′ − r2|)|dr′

+

∫

Ωr2

|r1 − r′|α1−n| log(2d/|r′ − r2|)|dr′ +
∫

Ωc

|r1 − r′|α1−n| log(2d/|r′ − r2|)|dr′

≤ ωn log(4d/|r1 − r2|) |r
1 − r2|α1

α12α1
+ ωn

|r1 − r2|α1

2α1n

(
log(4d/|r1 − r2|) +

1

n

)

+ωn
dα1

α1

(
log(6) +

1

α1

)
≤ ωndα1C7(α1).
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Abstract.
In Diffuse Optical Tomography (DOT), the discretization error in the numerical

solutions of the forward and inverse problems results in error in the reconstructed
optical images. In practice, this error can not be avoided, but can be reduced by
appropriate discretization. In this work, we analyze the error in the reconstructed
optical absorption images, resulting from the discretization of the forward and inverse
problems. We show that the error due to the discretization of each problem is
bounded by the discretization error in the corresponding problem solution, scaled
spatially by the solutions of both problems. Based on this error analysis, we develop
adaptive discretization schemes for the forward and inverse problems in order to reduce
the error in the reconstructed images. This approach leads to adaptively refined
composite meshes that yield the desired level of imaging accuracy while minimizing
the computational complexity.

1. Introduction

Imaging in Diffuse Optical Tomography (DOT) is comprised of two interdependent

stages which seek solutions to the forward and inverse problems. The forward

problem is associated with describing the NIR light propagation, while the objective

of the inverse problem is to estimate the unknown optical parameters from boundary

measurements [3].

There are a variety of factors that affect the accuracy of the DOT imaging, such

as model mismatch (due to light propagation model and/or linearization of the inverse

problem), measurement noise, discretization, numerical algorithm efficiency, and inverse

problem formulation. In this work, we present an error analysis to show the effect of the

discretization error on the accuracy of the reconstructed optical absorption images. Our

‡ corresponding author : yazici@ecse.rpi.edu
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analysis identifies several factors which influence the extent to which the discretization

error impacts the accuracy of the reconstructed images. For example; the mutual

dependence of forward and inverse problems, the number of sources and detectors

and their configuration, and the formulation of the inverse problem. In particular,

our error analysis reveals that one has to consider the inherent dependence of the

inverse problem solution on the solution of the forward problem in order to develop

an effective discretization scheme for each problem. In this context, based on the

presented error analysis, we propose adaptive discretization schemes for the forward

and inverse problems which ensure stable image reconstructions and reduce the error in

the reconstructed optical images resulting from discretization.

There has been extensive research on error estimation and adaptive mesh

refinement, however most of the efforts have concentrated on the estimation of

discretization error in the solutions of partial differential equations (PDEs) [6, 2,

7, 8, 26, 28]. On the contrary, relatively little has been published in the area of

parameter estimation problems governed by PDEs; see for example [24, 10, 23, 9] for

a posteriori error estimates and/or adaptive mesh refinement strategies in parameter

estimation problems. In the area of DOT, Arridge et al showed that approximation

errors resulting from the discretization of the forward problem can lead to significant

degradation in the quality of the reconstructed images [4]. In that work, the error in the

reconstructed images is minimized using an enhanced imaging model that treats this

additional approximation error within the Bayesian framework. To address the optical

image degradation due to discretization, several investigators have reported on adaptive

discretization schemes for the forward and inverse problems, yet an analysis regarding

the error in the reconstructed optical images, resulting from discretization has not been

reported so far. In [12], Eppstein et al proposed a “data driven zonation” scheme,

which can be viewed as an adaptive discretization algorithm, for fluorescence imaging.

We presented a region-of-interest (ROI) imaging scheme for DOT [15], which employed

a multi-level algorithm on a nonuniform grid. The non-uniform grid is designed so as

to provide finer spatial resolution for the ROI which corresponds to the tumor region

as indicated by a priori anatomical image. Torregrossa et al proposed an a priori non-

uniform mesh design which provides high resolution at the heterogeneities and near

boundary regions [27]. In that work, the mesh refinement is independent of the source-

detector configuration and the location of the heterogeneities. Gu et al proposed a dual

mesh strategy, in which, a relatively fine uniform mesh is considered for the forward

problem discretization and a coarse uniform mesh is generated for the inverse problem

discretization [14]. In the same study, an adaptive refinement scheme was proposed for

the inverse problem discretization, but no adaptive refinement was considered for the

solution of the forward problem. Huang and Zhu also presented a dual-mesh strategy

which makes use of a priori ultrasound information [16]. In that work, the dual mesh is
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a coarse mesh for the background tissue and a relatively fine mesh for the heterogeneity,

similar to the approach in [15]. In fluorescence imaging, Joshi et al used a dual adaptive

mesh strategy to discretize the inverse problem and the associated coupled diffusion

equations, where the refinement criterion is based on a posteriori discretization error

estimates [19]. Note that in all these studies [12, 15, 27, 14, 16, 19], the mesh refinement

criteria considered for the inverse (forward) problem disregard the impact of the solution

of the forward (inverse) problem.

In this work, we model the forward problem by the frequency-domain diffusion

equation. As for the inverse problem, we focus on the estimation of the absorption

coefficient. We consider the linear integral equation resulting from the iterative

linearization of the inverse problem based on Born approximation and use zeroth order

Tikhonov regularization to address the ill-posedness of the resulting integral equation.

We use finite elements with piecewise linear Lagrange basis functions to discretize the

forward and inverse problems and analyze the effect of the discretization of each problem

on the reconstructed optical absorption image. Our analysis describes the dependence

of the image quality on the optical image properties, the configuration of the source

and detectors, and the regularization parameter, in addition to the discretization error

in the solution of each problem. In this respect, we separately show the effect of the

discretization of the forward and inverse problems. Hence, we first consider the impact

of the inverse problem discretization when there is no discretization error in the solution

of the forward problem, and provide a bound for the resulting error in the reconstructed

optical image. Next, we analyze the effect of the forward problem discretization on

the accuracy of the reconstructed image without discretizing the inverse problem, and

obtain another bound for the resulting error in the reconstructed optical image. We see

that each error bound comprises the discretization error in the corresponding problem

solution, scaled spatially by the solutions of both problems. This is a direct consequence

of the fact that the inverse problem solution depends on the model defined by the

forward problem. Finally, based on the two error bounds provided by the error analysis,

we propose a practical adaptive discretization scheme for the forward and inverse

problems, respectively. We remark that the mesh refinement criterion for each problem

comprises the discretization error in the corresponding problem solution, scaled spatially

by the solutions of both problems. Thus, the proposed adaptive mesh generation

algorithms address the interdependence between the forward and inverse problems

and the source-detector configuration as well. This makes the proposed adaptive

discretization algorithms different from the previous approaches [12, 15, 27, 14, 16, 19].

The simulation experiments validate the implications of our error analysis and show

that the proposed mesh generation algorithms significantly improve the accuracy of the

reconstructed optical images while keeping the number of unknowns in the forward and

inverse problems within the allowable limits.
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The outline of this paper is as follows: Section 2 defines the forward and inverse

problems. In Section 3, we discuss the discretization of the forward and inverse problems.

In Section 4, we present two theorems that summarize the impact of discretization on the

accuracy of the reconstructed optical images. In Section 5, we introduce the adaptive

mesh generation algorithms for the solution of the forward and inverse problems. In

Section 6, we present our experimental results, which is followed by the Conclusion

section. The Appendix includes results regarding the boundedness and compactness

of the forward operator and the proof for the convergence of the inverse problem

discretization.

2. Forward and Inverse Problems

In this section, we describe the model for NIR light propagation and define the forward

and inverse DOT problems. Table 1 provides a list of the notation used throughout the

paper.

2.1. Forward Problem

We use the following boundary value problem to model the NIR light propagation in a

bounded domain Ω ⊂ R3:

−∇ ·D(x)∇gj + (µa(x) +
iω

c
)gj = Qj(x) x ∈ Ω, (2.1)

gj + 2aD(x)
∂gj

∂n
= 0 x ∈ ∂Ω, (2.2)

where Qj(x) is the point source located at xj
s, D(x) is the diffusion coefficient, µa(x)

is the absorption coefficient, ω is the modulation frequency of the source, c is the speed

of the light and a = (1 + R)/(1 − R) where R is a parameter governing the internal

reflection at the boundary ∂Ω. Note that we assume the diffusion coefficient is isotropic.

For the general anisotropic material, see [20].

The adjoint problem associated with (2.1)-(2.2) is given by the following boundary

value problem [3]:

−∇ ·D(x)∇g∗i + (µa(x)− iω

c
)g∗i = 0 x ∈ Ω, (2.3)

g∗i + 2aD(x)
∂g∗i
∂n

= Q∗
i (x) x ∈ ∂Ω, (2.4)

where Q∗
i (x) is the adjoint source located at xi

d. In this work, we approximate the

point source Qj in (2.1) and the adjoint source Q∗
i in (2.4) by Gaussian functions with

sufficiently low variance, whose centers are located at xj
s and xi

d, respectively.
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Table 1. Index of notation.

Notation Explanation

g(x, xj
s) = gj(x) = gj Solution of the diffusion equation for the jth

point source located at x = xj
s

g∗(x,xi
d) = g∗i (x) = g∗i Solution of the adjoint problem for the ith

adjoint source located at x = xi
d

Gj(x) = Gj Finite element approximation of gj(x)

G∗
i (x) = G∗

i Finite element approximation of g∗i (x)

ej(x) = ej The discretization error in the finite element

approximation of g(x,xj
s)

e∗i (x) = e∗i The discretization error in the finite element

approximation of g∗(x,xi
d)

α(x) = α Small perturbation over the background µa(x)

Γ(xi
d,x

j
s) = Γ(i, j) = Γij Differential measurement at the ith detector

due to the jth source

Aa : L∞ → CNd×Ns The integral operator mapping α(x) to Γij

A∗
a : CNd×Ns → L1 The adjoint of Aa

H(xj
s, x

i
d; x) The kernel of Aa

H∗(x; xj
s,x

i
d) The kernel of A∗

a

γ A∗
aΓij

λ The regularization parameter

αλ(x) = αλ Solution of the regularized inverse problem

f(x) The complex conjugate of f(x)

‖f(x)‖0 The L2 (or H0) norm of f(x) over the domain Ω

‖f(x)‖p The Hp norm of f(x) over the domain Ω

‖f(x)‖∞ The L∞ norm of f(x) over the domain Ω

‖f(x)‖Lp(Ω) The Lp norm of f(x) over the domain Ω

‖f(x)‖0,m The L2 (or H0) norm of f(x) over the mth

finite element Ωm

‖f(x)‖p,m The Hp norm of f(x) over the mth finite element Ωm

‖f(x)‖∞,m The L∞ norm of f(x) over the mth finite element Ωm

For the solution of the forward problem, we consider the variational problem

formulations of (2.1)-(2.2) and (2.3)-(2.4):∫

Ω

∇ψ ·D∇gj + ψ((µa +
jω

c
)gj −Qj) +

∫

∂Ω

ψ
1

2a
gj = 0, (2.5)

where ψ ∈ H1 is a test function. Equivalently, we can express (2.5) using the sesquilinear



Effect of discretization error in diffuse optical tomography 6

form:

b(ψ, gj) := A(ψ, gj)+ < ψ,
1

2a
gj >= (ψ, Qj), (2.6)

where

A(ψ, gj) :=

∫

Ω

∇ψ ·D∇gj + (µa +
jω

c
)ψgj,

(ψ, Qj) :=

∫

Ω

ψQj,

< ψ,
1

2a
gj > :=

1

2a

∫

∂Ω

ψgj.

Similarly, the variational problem for (2.3)-(2.4) can be formulated as:

b∗(ψ, g∗i ) := A(ψ, g∗i )+ < ψ,
1

2a
g∗i >=< ψ,

1

2a
Q∗

i >, (2.7)

where in A(ψ, g∗i ), ω is replaced by −ω.

The sesquilinear forms b(ψ, gj), b∗(ψ, g∗i ) are continuous and positive definite [17].

As a result, the variational problems (2.6) and (2.7) have unique solutions, which

follows from the Lax-Milgram Lemma [11]. Furthermore, the solutions gj and g∗i of

the variational problems (2.6) and (2.7) belong to H1, which results from the H1

boundedness of the Gaussian function that approximates the point source Qj and the

adjoint source Q∗
i [17]. Assuming D(x), µa(x) ∈ C2(Ω) and noting that Qj, Q

∗
i ∈ H1;

the solutions gj, g
∗
i satisfy gj, g

∗
i ∈ H3

loc(Ω) (Chapter 6.3, Theorem 2 in [13]). This last

condition implies (Chapter 5.6, Theorem 6 in [13])

gj, g
∗
i ∈ C1(Ω). (2.8)

2.2. Inverse Problem

In this work, we focus on the estimation of the absorption coefficient; therefore we

assume D(x) is known. To address the nonlinear nature of the inverse DOT problem, we

consider an iterative algorithm based on repetitive linearization of the inverse problem

using first order Born approximation [3]. As a result, at each linearization step, the

following linear integral equation relates the differential optical measurements to a small

perturbation α(x) on the absorption coefficient µa(x):

Γ(xi
d,x

j
s) = −

∫

Ω

g∗(x́,xi
d)g(x́, xj

s)α(x́)dx́ (2.9)

=

∫

Ω

H(xj
s,x

i
d; x́)α(x́)dx́

= Aaα, (2.10)

where xi
d, i = 1, . . . , Nd and xj

s, j = 1, . . . , Ns are respectively the detector and source

positions, H(xj
s,x

i
d; x) = −g∗(x,xi

d)g(x, xj
s) is the kernel of the integral operator
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Aa : L∞ → CNd×Ns , g(x, xj
s) is the solution of (2.6), g∗(x,xi

d) is the solution of (2.7),

and Γ(xi
d, x

j
s) represents the differential measurement at the ith detector due to the jth

source. Note that approximating Q∗
i in (2.4) by a Gaussian function centered at xi

d

implies that Γ(xi
d,x

j
s) corresponds to the scattered optical field evaluated at xi

d, after

filtering it by that Gaussian function. Thus, the Gaussian approximation of the adjoint

source models the finite size of the detectors. Similarly, approximating Qj in (2.1) by a

Gaussian function models the finite beam of the source.

Let gj and g∗i in (2.9) be the solutions of (2.6) and (2.7), respectively. Then,

the linear operator Aa : L∞ → CNd×Ns defined by (2.9) is compact and bounded by

(see Appendix A and Appendix B)

‖Aa‖L∞→l1 ≤ NdNs max
i
‖g∗i ‖0 max

j
‖gj‖0. (2.11)

For the given solution space L∞ for α, the compactness of the linear operator Aa implies

the ill-posedness of (2.9). Hence, we regularize (2.9) with a zeroth order Tikhonov

regularization. This yields the following equation which defines our inverse problem at

each linearization step:

γ = A∗
aΓij = (A∗

aAa + λI)αλ (2.12)

= Kαλ, (2.13)

where λ > 0 and αλ is an approximation to α. In this representation, A∗
a : CNd×Ns → L1

is the adjoint of Aa and I is the identity operator.

Let A = A∗
aAa, then A : L∞ → L1 is defined as follows:

(Aα)(x) =

Nd,Ns∑
i,j

H∗(x; xj
s,x

i
d)

∫

Ω

H(xj
s,x

i
d; x́)α(x́)dx́

=

∫

Ω

κ(x, x́)α(x́)dx́, (2.14)

where κ(x, x́) stands for the kernel of the integral operator A and is given by

κ(x, x́) =

Nd,Ns∑
i,j

H∗(x; xj
s, x

i
d)H(xj

s,x
i
d; x́), (2.15)

and H∗(x; xj
s,x

i
d) is the kernel of the adjoint operator A∗

a given by:

(A∗
aβ)(x) =

Nd,Ns∑
i,j

H∗(x; xj
s,x

i
d)β(xi

d,x
j
s) =

Nd,Ns∑
i,j

−g∗(x, xi
d)g(x,xj

s)β(xi
d, x

j
s), (2.16)

for all β ∈ CNd×Ns .

Having defined the adjoint integral operator, we note that the operator A =

A∗
aAa : L∞ → L1 is compact and that the operator K : L∞ → L1 is bounded by

‖K‖ ≤ ‖Aa‖2 + λ. In this work, we assume that the solution αλ ∈ L∞ also satisfies

αλ ∈ H1. For the rest of the paper, we will denote L∞ and L1 by X and Y , respectively.
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3. Discretization of the Inverse and Forward Problems

In this section, we outline the discretization of the inverse and forward problems.

3.1. Inverse Problem Discretization

In practice, we seek a finite-dimensional approximation to the solution of the inverse

problem (2.13) at each linearization step. Therefore, we discretize (2.13) by projecting

it onto a finite dimensional subspace.

Let Xn ∈ X and Yn ∈ Y denote a sequence of finite-dimensional subspaces of

dimension n, spanned by piecewise linear Lagrange basis functions {L1, . . . , Ln}, and

{xp}, p = 1, . . . , n, be the set of collocation points on Ω. Then, the projection operator

Pn : Y → Yn associated with the collocation method is defined by

Pnf(x) =
n∑

p=1

f(xp)Lp(x), x ∈ Ω, (3.17)

for all f(x) ∈ Y .

The collocation method approximates the solution of (2.13) by an element αλ
n ∈ Xn

satisfying

(Kαλ
n)(xl) = γ(xl), l = 1, . . . , n. (3.18)

Using the piecewise linear Lagrange basis functions Lp(x) for Xn, we express αλ
n as

αλ
n(x) =

n∑
p=1

apLp(x). (3.19)

Then, projection by collocation method for the operator K yields

λal +
n∑

p=1

ap

∫

Ω

κ(xl, x́)Lp(x́)dx́ = γ(xl), l = 1, . . . , n, (3.20)

which is equivalent to

PnKαλ
n = Pnγ. (3.21)

3.2. Forward Problem Discretization

In this section, we consider the finite element discretization of (2.6) and (2.7), and use

their solutions to approximate H(xj
s, x

i
d; x́) and H∗(x; xj

s,x
i
d). As a result, we obtain

finite dimensional approximations to K and γ.

Let Lk(x) be the piecewise linear Lagrange basis functions. Replacing ψ and

gj in (2.6) with their finite-dimensional counterparts Ψ =
∑Nj

k=1 pkLk(x), Gj =
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∑Nj

k=1 ckLk(x); and replacing ψ and g∗i in (2.7) with Ψ =
∑Ni

k=1 pkLk(x), G∗
i =∑Ni

k=1 dkLk(x) yields the matrix equations:

Scj = qj, (3.22)

S∗di = q∗i , (3.23)

for cj = [c1, c2, · · · , cNj
]T and di = [d1, d2, · · · , dNi

]T . Here S and S∗ are the finite

element matrices and qj and q∗i are the load vectors resulting from the finite element

discretization of (2.6) and (2.7). Note that for each source (detector), the dimension of

the finite element solution Gj (G∗
i ) can be different, therefore Nj (Ni) may vary.

The H1 boundedness of the solutions gj and g∗i implies that the discretization error

ej and e∗i in Gj and G∗
i on the mth finite element is bounded. A bound for ej and e∗i

can be found by using the interpolation error estimates (Theorem 4.4.4 in [11]):

‖ej‖0,m ≤ C‖gj‖1,mhj
m, (3.24)

‖e∗i ‖0,m ≤ C‖g∗i ‖1,mhi
m, (3.25)

where C is a positive constant and hj
m (hi

m) is the diameter of the smallest ball containing

the mth finite element.

3.3. Discretization of the Inverse Problem with Operator Approximations

Substituting the finite element approximations Gj and G∗
i in (2.14) and (2.16), and

using the resulting finite-dimensional operator approximations in (3.21), we obtain the

following linear system in terms of α̃λ
n which approximates αλ:

PnK̃α̃λ
n = Pnγ̃. (3.26)

In (3.26), the operator K̃ : X → Y is the finite dimensional approximation of K in (2.13)

and PnK̃ : Xn → Yn. Similarly,

γ̃ = Ã∗
aΓ, (3.27)

where Ã∗
a is the approximation to the adjoint operator A∗

a, obtained by substituting Gj

and G∗
i in (2.16).

4. Discretization-based Error Analysis

As a result of the discretization of the forward and inverse problems, the reconstructed

image α̃λ
n in (3.26) is an approximation to the actual image αλ. Thus, the accuracy

of the reconstructed image depends on the error incurred by the discretization of the

forward and inverse problems.

In this section, we analyze the effect of the discretization of the forward and inverse

problems on the accuracy of DOT imaging. The analysis is carried out based on the

inverse problem at each linearization defined by (2.13) and the associated kernel κ(x, x́).
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In this work, we follow an approach which allows us to separately analyze the

effect of the discretization of each problem on the accuracy of the reconstructed optical

image. In this respect, we first consider the impact of projection (i.e. inverse problem

discretization) by collocation method when the associated kernel κ(x, x́) in (2.13) is

exact. Next, we explore the case in which the kernel is replaced by its finite-dimensional

approximation (i.e. degenerate kernel) and analyze the effect of the forward problem

discretization on the accuracy of the reconstructed image without projecting (2.13).

Our analysis reveals that even the kernel is exact, the accuracy of the solution

approximation αλ
n in (3.21) resulting from the inverse problem discretization depends

on the kernel κ(x, x́) of the integral operator. Likewise, the error in the reconstructed

optical image due to the discretization of the forward problem is a function of the

inverse problem solution. These results suggest that the discretization of the inverse

and forward problems can not be considered independent of each other.

4.1. Case 1: The kernel κ(x, x́) is exact

In this section, we show the effect of projection on the optical imaging accuracy. In the

analysis, we assume that the kernel κ(x, x́) is exact. We first prove the convergence of

the projection method for the operator K, and then analyze the effect of projection on

the imaging accuracy.

Clearly, the inverse operator K−1 : Y → X exists since K is positive definite for

λ > 0. Furthermore, by the compactness of A and Riesz Theorem, the inverse operator

K−1 is bounded by

‖K−1‖ ≤ 1

λ
. (4.28)

Lemma: Projection by collocation method for the operator K : X → Y converges.

Specifically, the operators PnK : Xn → Yn are invertible and (PnK)−1PnKαλ → αλ,

n →∞. Furthermore,

‖(PnK)−1PnK‖X→Yn ≤ CM
‖K‖

λ
(4.29)

for some CM > 0 independent of n.

Proof. See Appendix C. ¤
Based on the Lemma, the following theorem provides an upper bound for ‖αλ −

αλ
n‖L1(Ω), where αλ

n is the solution of (3.21):

Theorem 1: Let {Ωm} denote a set of finite elements for m = 1, · · · , N∆, such that⋃N∆

m Ωm = Ω and hm be the diameter of the smallest ball that contains the mth

element. Then,

‖αλ − αλ
n‖L1(Ω) ≤ C

√
VΩ‖I − Tn‖Y→Xn

N∆∑
m=1

‖αλ‖1,mhm
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+
C

λ
‖Tn‖Y→Xn max

i,j
‖g∗i gj‖L1(Ω)

N∆∑
m=1

Nd,Ns∑
i,j

‖g∗i gj‖0,m‖αλ‖1,mhm,

where C is a positive constant, VΩ is the volume of Ω and Tn : Y → Xn is a

uniformly bounded operator given by Tn = [I + 1
λ
PnA]−1Pn.

Proof.

αλ − αλ
n = [I − (PnK)−1PnK]αλ

= [I − (PnK)−1PnK](αλ − ψ) (4.30)

since [I − (PnK)−1PnK]ψ = 0, where ψ ∈ Xn is the interpolant of αλ. Using (C.3),

[I − (PnK)−1PnK] = I − [I +
1

λ
PnA]−1 1

λ
PnK

= I − Tn
1

λ
K, (4.31)

where Tn = [I + 1
λ
PnA]−1Pn is a uniformly bounded operator (see Appendix C).

We use K defined by (2.13) and (4.31) in (4.30) to obtain

αλ − αλ
n = (I − Tn)(αλ − ψ)− Tn

λ
A(αλ − ψ). (4.32)

Then we use the definition of A in (4.32) and find

αλ − αλ
n = (I − Tn)(αλ − ψ)− Tn

λ

∫

Ω

κ(x, x́)(αλ − ψ)(x́)dx́. (4.33)

This leads to

‖αλ − αλ
n‖L1(Ω) ≤ ‖I − Tn‖Y→Xn‖αλ − ψ‖L1(Ω)

+
1

λ
‖Tn‖Y→Xn‖

∫

Ω

κ(x, x́)(αλ − ψ)(x́)dx́‖L1(Ω)

≤
√

VΩ‖I − Tn‖Y→Xn‖αλ − ψ‖0

+
1

λ
‖Tn‖Y→Xn

∫

Ω

dx

∫

Ω

|κ(x, x́)(αλ − ψ)(x́)|dx́, (4.34)

The second term in (4.34) can then be rewritten as:

1

λ
‖Tn‖Y→Xn

∫

Ω

dx

∫

Ω

|κ(x, x́)(αλ − ψ)|dx́

=
1

λ
‖Tn‖Y→Xn

∫

Ω

dx
( ∑N∆

m=1

∫
Ωm
|κ(x, x́)(αλ − ψ)|dx́

)
. (4.35)

Let eα = αλ − ψ be the interpolation error. Then, using (2.15),

N∆∑
m=1

∫

Ωm

|κ(x, x́)eα(x́)|dx́ (4.36)
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=

N∆∑
m=1

∫

Ωm

|
Nd,Ns∑

i,j

g∗i (x)gj(x)g∗i (x́)gj(x́)eα(x́)|dx́ (4.37)

≤
N∆∑
m=1

Nd,Ns∑
i,j

|g∗i (x)gj(x)|
∫

Ωm

|g∗i (x́)gj(x́)||eα(x́)|dx́

≤
N∆∑
m=1

Nd,Ns∑
i,j

|g∗i (x)gj(x)|‖g∗i (x́)gj(x́)‖0,m‖eα(x́)‖0,m, (4.38)

where (4.38) follows from the Schwarz’ inequality. Note that g∗i gj ∈ L2 since

g∗i , gj ∈ L∞ by (2.8).

We now use (4.35) and (4.38) to obtain

1

λ
‖Tn‖Y→Xn

∫

Ω

dx
( ∫

Ω
|κ(x, x́)(αλ − ψ)|dx́

)

≤ 1

λ
‖Tn‖Y→Xn

∫

Ω

dx

×
N∆∑
m=1

Nd,Ns∑
i,j

|g∗i (x)gj(x)|‖g∗i (x́)gj(x́)‖0,m‖eα(x́)‖0,m. (4.39)

Using the bound (4.39) in (4.34) and substituting the interpolation error bound [11]

‖eα‖0,m ≤ C‖αλ‖1,mhm, (4.40)

we obtain

‖αλ − αλ
n‖L1(Ω) ≤ C

√
VΩ‖I − Tn‖Y→Xn

N∆∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn

N∆∑
m=1

Nd,Ns∑
i,j

‖g∗i gj‖L1(Ω)‖g∗i gj‖0,m‖αλ‖1,mhm.

≤ C
√

VΩ‖I − Tn‖Y→Xn

N∆∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn max

i,j
‖g∗i gj‖L1(Ω)

N∆∑
m=1

Nd,Ns∑
i,j

‖g∗i gj‖0,m‖αλ‖1,mhm. (4.41)

¤

Remarks: (i) Theorem 1 shows the spatial dependence of the inverse problem

discretization on the forward problem solution.

(ii) The first term in (4.41) suggests that the mesh of the inverse problem be refined

where ‖αλ‖1 is large.
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(iii) The second term in (4.41) shows that the term ‖αλ‖1,m is scaled spatially by

‖g∗i gj‖0,m. Thus, the effect of the interpolation error eα in the inverse problem

solution is scaled by the solution of the forward problem.

(iv) The regularization parameter affects the bound on ‖αλ − αλ
n‖L1(Ω).

(v) Increasing the number of sources and detectors will increase the bound on

‖αλ − αλ
n‖L1(Ω).

4.2. Case 2: The kernel is degenerate

In this section, we first derive approximate upper bounds for the approximation errors

‖K̃−K‖ and ‖γ̃−γ‖, which result from the discretization of the forward problem. Then,

we show the effect of these approximation errors on the accuracy of the reconstructed

optical image. For notational convenience, we will drop the subscripts on the norms ‖·‖
where necessary.

The operator K : X → Y is bounded with a bounded inverse K−1 : Y → X.

By the finite element approximation of the associated kernel, the sequence of bounded

linear finite-dimensional operators K̃ is norm convergent ‖K̃ −K‖ → 0; Nj, Ni → ∞,

for j = 1, · · · , Ns and i = 1, · · · , Nd, and

‖K̃−1‖ < 1/λ, (4.42)

which can be obtained analogous to (4.28).

In the following, we derive an explicit approximation to the error ‖K̃ − K‖ in

terms of the associated kernel and the discretization error in the kernel approximation.

The result is then used to compute the error in the reconstructed optical image due to

‖K̃ −K‖.
By definition,

‖(Aa − Ãa)α‖l1 =

Nd,Ns∑
i,j

∣∣∣ ∫
Ω
(g∗i (x)gj(x)−G∗

i (x)Gj(x))α(x)dx
∣∣∣ , (4.43)

where G∗
i , Gj are finite element approximations to g∗i and gj, respectively. We can

expand g∗i gj −G∗
i Gj as

g∗i gj −G∗
i Gj = e∗i ej + Gje∗i + G∗

i ej, (4.44)

where e∗i = g∗i − G∗
i and ej = gj − Gj. Replacing G∗

i and Gj respectively with g∗i − e∗i
and gj − ej, we get

g∗i gj −G∗
i Gj = gje∗i + g∗i ej − e∗i ej

≈ gje∗i + g∗i ej, (4.45)

where we neglect the term e∗i ej.

We can express K̃ −K as

K̃ −K = A∗
aAa − Ã∗

aÃa. (4.46)
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Following a similar approach as above,

A∗
aAa − Ã∗

aÃa = (A∗
a − Ã∗

a)(Aa − Ãa) + Ã∗
a(Aa − Ãa) + (A∗

a − Ã∗
a)Ãa. (4.47)

As a result, the following condition holds:

‖K̃ −K‖ ≤ ‖(A∗
a − Ã∗

a)(Aa − Ãa)‖+ ‖Ã∗
a(Aa − Ãa) + (A∗

a − Ã∗
a)Ãa‖. (4.48)

Since Ãa = −(Aa − Ãa) + Aa, (4.48) can be rewritten as

‖K̃ −K‖ = ‖A∗
aAa − Ã∗

aÃa‖
≤ ‖(A∗

a − Ã∗
a)(Aa − Ãa)‖+ 2‖A∗

a(Aa − Ãa)‖
≈ 2‖A∗

a(Aa − Ãa)‖, (4.49)

where we neglect the term ‖(A∗
a − Ã∗

a)(Aa − Ãa)‖.
Similarly, ‖γ̃ − γ‖ can be interpreted as

‖γ̃ − γ‖L1(Ω) =

∫

Ω

|
Nd,Ns∑

i,j

(g∗i (x)gj(x)−G∗
i (x)Gj(x))Γ(xi

d,x
j
s)|dx

≈
∫

Ω

|
Nd,Ns∑

i,j

(e∗i (x)gj(x) + g∗i (x)ej(x))Γ(i, j)|dx, (4.50)

where the error in Γ due to discretization is neglected and the last approximation is

derived similar to (4.45).

We now analyze the effect of the forward problem discretization on the accuracy of

the reconstructed optical image. Let α̃λ be the solution of

K̃α̃λ = γ̃, (4.51)

where K̃ and γ̃ are the finite dimensional approximations to K and γ, respectively.

Then, by Theorem 10.1 in [21], the error in the solution α̃λ with respect to the actual

solution αλ is bounded by

‖αλ − α̃λ‖ ≤ 1

λ

{
‖(K̃ −K)αλ‖+ ‖γ̃ − γ‖

}
. (4.52)

In the next theorem, we will expand the terms in (4.52) to show explicitly the effect

of the forward problem discretization on the accuracy of the inverse problem solution.

Theorem 2: Let hi
m and hj

m be the diameter of the smallest ball that contains the mth

element in the finite element solutions G∗
i and Gj, respectively. Then, a bound for

the error in the solution α̃λ due to operator approximation K̃ is given:

‖αλ − α̃λ‖L1(Ω) ≤ C

λ
max

i,j
‖g∗i gj‖L1(Ω)

×
(

N∆∑
m=1

Nd,Ns∑
i,j

(
2‖gjα

λ‖0,m + ‖α‖∞‖gj‖0,m

)
‖g∗i ‖1,mhi

m

+

N∆∑
m=1

Nd,Ns∑
i,j

(
2‖g∗i αλ‖0,m + ‖α‖∞‖g∗i ‖0,m

)
‖gj‖1,mhj

m

)
, (4.53)
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where C is a positive constant.

Proof. Using (4.49), (4.43), and (4.45), we can write

‖(K̃ −K)αλ‖L1(Ω) ≈ 2‖A∗
a(Aa − Ãa)α

λ‖L1(Ω)

= 2‖
Nd,Ns∑

i,j

g∗i (x)gj(x)

∫

Ω

(
gj(x́)e∗i (x́) + g∗i (x́)ej(x́)

)
αλ(x́)dx́‖L1(Ω)

≤ 2 max
i,j

‖g∗i gj‖L1(Ω)

Nd,Ns∑
i,j

∫

Ω

|
(

gj(x́)e∗i (x́) + g∗i (x́)ej(x́)
)

αλ(x́)|dx́. (4.54)

An upper bound for the integral in (4.54) can be obtained as follows:∫

Ω

|
(

gj(x́)e∗i (x́) + g∗i (x́)ej(x́)
)

αλ(x́)|dx́

≤
N∆∑
m=1

‖e∗i ‖0,m‖gjα
λ‖0,m + ‖ej‖0,m‖g∗i αλ‖0,m. (4.55)

Note that gjα
λ ∈ L2 since |gjα

λ| ≤ |gj|‖αλ‖∞. Similarly, g∗i α
λ ∈ L2 since

|g∗i αλ| ≤ |g∗i |‖αλ‖∞. Using (4.55) in (4.54),

‖(K̃ −K)αλ‖L1(Ω)

≤ 2 max
i,j

‖g∗i gj‖L1(Ω)

N∆∑
m=1

Nd,Ns∑
i,j

‖e∗i ‖0,m‖gjα
λ‖0,m + ‖ej‖0,m‖g∗i αλ‖0,m.

(4.56)

To compute an upper bound for ‖γ̃ − γ‖, we first write
∫

Ω

|
Nd,Ns∑

i,j

(
e∗i (x)gj(x) + g∗i (x)ej(x)

)
Γ(i, j)|dx

≤ max
i,j

|Γ(i, j)|
∫

Ω

Nd,Ns∑
i,j

|e∗i (x)gj(x) + g∗i (x)ej(x)|dx

≤ max
i,j

|Γ(i, j)|
N∆∑
m=1

Nd,Ns∑
i,j

(
‖e∗i ‖0,m‖gj‖0,m + ‖g∗i ‖0,m‖ej‖0,m

)
. (4.57)

Noting (2.9),

max
i,j

|Γ(i, j)| ≤ max
i,j

‖g∗i gj‖L1(Ω)‖α‖∞, (4.58)

which leads to

max
i,j

|Γ(i, j)|
N∆∑
m=1

Nd,Ns∑
i,j

(
‖e∗i ‖0,m‖gj‖0,m + ‖g∗i ‖0,m‖ej‖0,m

)

≤ max
i,j

‖g∗i gj‖L1(Ω)‖α‖∞
( ∑N∆

m=1

∑Nd,Ns

i,j ‖e∗i ‖0,m‖gj‖0,m + ‖g∗i ‖0,m‖ej‖0,m

)
. (4.59)
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We now use (4.56), (4.59), the corresponding discretization error estimates (3.24)-

(3.25), and (4.52) to obtain (4.53). ¤

Remarks: (i) Theorem 2 suggests the use of meshes designed individually for the

solutions Gj, j = 1, · · · , Nj and G∗
i , i = 1, · · · , Ni.

(ii) Theorem 2 states explicitly the effect of the forward problem discretization

on the accuracy of the inverse problem solution. In this context, Theorem

2 suggests a discretization scheme for the forward problem, where the

discretization criterion is based on the inverse problem solution accuracy, rather

than the accuracy of the forward problem solution.

(iii) For each source, when solving for Gj, hj
m has to be kept small where

(2‖g∗i αλ‖0,m +‖α‖∞‖g∗i ‖0,m)‖gj‖1,m is large. Note that ‖gj‖1,m will be large on

the elements close to the jth source.

(iv) For each detector, when solving for G∗
i , hi

m has to be kept small where

(2‖gjα
λ‖0,m +‖α‖∞‖gj‖0,m)‖g∗i ‖1,m is large. Note that ‖g∗i ‖1,m will be large on

the elements close to the ith detector.

(v) |gj| and |g∗i | are higher close to the sources and detectors, respectively.

Therefore, hj
m has to be small around the jth source and around all detectors,

where αλ is nonzero. Likewise, hi
m has to be small around the ith detector and

around all sources, where αλ is nonzero.

(vi) If αλ is nonzero on the whole domain Ω, then the error may become higher

depending on the magnitude of |gj| and |g∗i |.
(vii) The regularization parameter affects the bound on ‖αλ − α̃λ‖L1(Ω).

(viii) Increasing the number of sources and detectors increases the bound on

‖αλ − α̃λ‖L1(Ω).

4.3. Iterative Born Approximation

In this section, we explore the error in the inverse problem solution within an iterative

linearization approach.

The error analysis presented in this paper covers the error which results from the

discretization of the forward and inverse problems. If α is sufficiently low, then one

iteration suffices to solve the inverse problem and the error analysis discussed above

applies. When iterative linearization is considered to address the nonlinearity of the

inverse problem, we can make use of the error analysis at each linearized step as follows:

At the end of the (r−1)th linearization step, the absorption coefficient estimate is given

by µ̂
(r−1)
a (x) = µ

(0)
a (x) +

∑r−1
t=1 α̃λ

n(t), where α̃λ
n(t) has an error due to discretization with

respect to the actual solution αλ
(t). In the next linearization, an error on the new solution

update µ̂
(r)
a (x) will be introduced due to:

(i) projection,
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(ii) the error (K̃−K)(r−1) in the operator (K̃)(r−1) and the error (γ̃−γ)(r−1) in (γ̃)(r−1)

resulting from forward problem discretization, and

(iii) the errors in (K̃)(r−1) and (γ̃)(r−1) due to error in Gj and G∗
i resulting from the

error in µ̂
(r−1)
a (x).

As a result, the error in µ̂
(r)
a (x) at the rth iteration is bounded by:

‖µa(x)− µ̂(r)
a (x)‖ = ‖

r∑
t=1

αλ
(t) − α̃λ

n(t)‖ ≤
r∑

t=1

‖αλ
(t) − α̃λ

n(t)‖, (4.60)

assuming that the background absorption µ
(0)
a (x) is approximated accurately.

5. Adaptive mesh generation

In this section, we first discuss the adaptive mesh design for the discretization of the

forward and inverse problems based on Theorems 1 and 2, such that the resulting error

in the reconstructed optical image due to each discretization is below a preset bound.

Next, we present practical adaptive mesh generation algorithms for the forward and

inverse problems, respectively.

5.1. Adaptive Mesh Generation for the Forward Problem

Let the mesh parameter hj
m for gj for j = 1, · · · , Ns and the mesh parameter hi

m for g∗i
for i = 1, · · · , Nd be chosen so that:

hj
m ≤ εf∑Nd

i (2‖g∗i αλ‖0,m + ‖α‖∞‖g∗i ‖0,m)‖gj‖1,m

= Bj, (5.61)

hi
m ≤ εf∑Ns

j (2‖gjαλ‖0,m + ‖α‖∞‖gj‖0,m)‖g∗i ‖1,m

= B∗
i , (5.62)

where the tolerance εf will be defined later. Then, by Theorem 2, the error in the

reconstructed image due to the forward problem discretization is bounded by:

C

λ
max

i,j
‖g∗i (x)gj(x)‖L1(Ω)N∆(Nd + Ns)εf = ε̃f , (5.63)

where C is a positive constant and ε̃f is the total allowable error in the reconstructed

optical image due to the forward problem discretization. Equation (5.63) implies the

following value for εf :

εf =
λε̃f

C(Nd + Ns)N∆

1

maxi,j ‖g∗i (x)gj(x)‖L1(Ω)

. (5.64)

In practice, Bj and B∗
i in (5.61)-(5.62) can not be computed since α, αλ, gj, and

g∗i are unknown. However, Bj and B∗
i can be estimated by using approximations for

the functions involved in these bounds, based on either a priori information or on the
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recent forward and inverse problem solution updates. Then, the elements whose mesh

parameter hj
m (hi

m) exceeds Bj (B∗
i ) can be determined and refined to satisfy (5.61)-

(5.62).

Algorithm 1 outlines the adaptive mesh generation algorithm for the forward

problem in the form of a pseudocode. The algorithm is performed for each source

and detector before the linearization of the inverse problem and it yields a family of

adaptively refined meshes with conforming elements. We use Rivara’s algorithm [25] for

refinement.

Algorithm 1 The pseudocode for the mesh generation algorithm for the forward

problem, prior to the linearization of the inverse problem.

¦ Generate an initial uniform mesh (∆,N∆), ∆ =
⋃N∆

m=1{∆m}
¦ Set εf

¦ Initialize the set of marked elements: Me ← {}
¦ flag = True

while flag = True

for each element ∆m ∈ ∆ with mesh parameter hj
m (hi

m)

if first linearization

¦ Use analytical solutions for gj and g∗i and a priori anatomical

information about α to compute the bound Bj in (5.61) (B∗
i in (5.62))

else

¦ Use current solution updates Gj and G∗
i and α̃λ

n

to compute Bj in (5.61) (B∗
i in (5.62))

end

if hj
m > Bj (hi

m > B∗
i )

¦ Me ← Me

⋃{∆m}
end

end

if Me 6= {}
¦ Refine the marked elements and update the mesh ∆

¦ Me ← {}
else

¦ flag = False

end

end

¦ Solve for Gj (G∗
i ).
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In practice, after the first sweep of refinement, one can compute the bound Bj

and B∗
i only for the new elements. We note that for the initial mesh design, we use a

model problem to compute the terms in the error bound relevant to the forward problem

solution (see Appendix D). If there is no a priori information, αλ can be assumed to

be spatially constant at the first linearization step. After the first linearization, the

norms in Bj and B∗
i relevant to gj and g∗i are not expected to change significantly. In

this context, the terms ‖gjα
λ‖0,m, ‖g∗i αλ‖0,m in (5.61) and (5.62) can be bounded by

‖gj‖0,m‖αλ‖∞,m and ‖g∗i ‖0,m‖αλ‖∞,m, respectively. Therefore, one can store the norms

‖gj‖0,m and ‖g∗i ‖0,m at the end of the first mesh generation, and update Bj and B∗
i in

the following mesh generations by using these stored values and the updated ‖αλ‖∞,m

values.

In case εf (ε∗f ) can not be chosen in prior, we consider a posterior approach, set

εf = 1 (ε∗f = 1), and compute hj
m/Bj (hi

m/B∗
i ) on each element, which is used as

the indicator for refinement. Then, the elements with indicator value exceeding the

average hj
m/Bj (hi

m/B∗
i ) quantity are marked for refinement. We note that in this case,

the algorithm has to be stopped when the number of nodes in the mesh exceeds the

allowable number of nodes.

5.2. Adaptive mesh generation for the inverse problem:

Let the mesh parameter hm for the solution of the inverse problem be defined as follows:

hm ≤ εinv/

(√
VΩ‖I − Tn‖Y→Xn‖αλ‖1,m +

1

λ
‖Tn‖Y→Xn

×max
i,j

‖g∗i (x)gj(x)‖L1(Ω)

Nd,Ns∑
i,j

‖g∗i (x)gj(x)‖0,m‖αλ‖1,m

)
= Binv. (5.65)

Then, by Theorem 1, the error in the reconstructed image due to inverse problem

discretization is bounded by

CN∆εinv = ε̃inv, (5.66)

where C is a positive constant and ε̃inv is the total allowable error in the reconstructed

optical image due to inverse problem discretization.

We present the pseudocode for our adaptive mesh generation algorithm used at

each linearization of the inverse problem in Algorithm 2. Similar to the forward problem

discretization, we use Rivara’s algorithm [25] for the refinement of the elements.

In practice, Binv in (5.65) can not be computed since αλ, gj, g∗i , and Tn are

unknown. Similar to the approach described in Section 5.1, we can compute an estimate

for Binv by using the uniform boundedness of the operator Tn (See Appendix C) and

by using approximate values for the functions involved in Binv. In this context, we use

either a priori information or the recent forward and inverse problem solution updates
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Algorithm 2 The pseudocode for the mesh generation algorithm at every linearization

step of the inverse problem.

¦ Generate an initial uniform mesh (∆,N∆), ∆ =
⋃N∆

m=1{∆m}
¦ Set εinv

¦ Initialize the set of marked elements: Me ← {}
¦ flag = True

while flag = True

for each element ∆m ∈ ∆ with mesh parameter hm

if first linearization

¦ Use current solution updates Gj and G∗
i and a priori information

about α to compute Binv in (5.65)

else

¦ Use current solution updates Gj and G∗
i and α̃λ

n

to compute Binv in (5.65)

end

if hm > Binv

¦ Me ← Me

⋃{∆m}
end

end

if Me 6= {}
¦ Refine the marked elements and update the mesh ∆

¦ Me ← {}
else

¦ flag = False

end

end

¦ Solve for α̃λ
n.

to calculate (5.65) on each element. Then, the elements with the mesh parameter

hm > Binv are determined and refined to satisfy (5.65).

In order to save computations, after the first sweep of refinement, one can compute

the bound Binv only for the new elements. Furthermore, similar to the approach

described in Section 5.1, the term ‖g∗i (x)gj(x)‖0,m in (5.65) can be stored after the first

mesh generation and can be used in the following mesh generations. In this context,

the bound Binv can be updated by using only the updated ‖αλ‖∞,m value.

Note that, in practice, one of the two terms in the denominator of Binv will be

dominant depending on the value of λ. Thus, we consider only the dominant term for
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the computation of Binv. In case εf can not be chosen in prior, we consider a posterior

approach, set εinv = 1 and compute ‖αλ‖1,mhm or
∑Nd,Ns

i,j ‖g∗i (x)gj(x)‖0,m‖αλ‖1,mhm on

each element, which are used as refinement indicators. Then, the elements with indicator

value which exceeds the average indicator value are refined. In this case, the algorithm

has to be stopped when the number of nodes in the mesh exceeds the allowable number

of nodes.

6. Numerical Experiments

We conduct a series of numerical experiments to demonstrate the implications of

Theorems 1 and 2, and to present the effectiveness of the proposed adaptive mesh

generation algorithms. We perform our experiments in 2D for ease of comparison and

image quality appraisals.

In the first simulation, we consider a series of image reconstructions to show the

effectiveness of the proposed adaptive mesh generation algorithms. In this context, we

compare the images reconstructed by using uniform meshes for the forward and inverse

problems to the images reconstructed by using adaptive meshes which are designed

based on Theorems 1 and 2.

In the second simulation, we show the effect of the heterogeneity size on the accuracy

of the reconstructed absorption images. Next, we demonstrate how this error can be

addressed by the proposed adaptive discretization schemes.

In the final simulation study, we demonstrate the implication of Theorem 2 and

show that meshes generated for the forward problem by using discretization error

estimates which disregard the interaction between the solutions gj and g∗i and αλ can

lead to unstable image reconstructions. We note that the proposed adaptive mesh

generation algorithm for the forward problem addresses this problem.

Note that in all experiments, we use triangular finite elements with piecewise linear

Lagrange basis functions and we apply Gaussian elimination method to solve the forward

problem (3.22)-(3.23) and the linearized inverse problem (3.26).

6.1. Simulation Study 1

In this simulation study, we consider the geometry shown in Figure 1(a). We simulate

the optical data by solving the diffusion equation at ω = 0 on a fine uniform grid

with 61 nodes along x and y directions, where the refractive index mismatch parameter

a = 3. 11 sources and 11 detectors are evenly spaced on the bottom and top edges of the

square, respectively. The diffusion coefficient D(x) = 0.0410 is assumed to be constant.

The circular heterogeneity with absorption coefficient µa = 0.2 cm−1 is embedded in an

optically homogeneous background with µa = 0.04 cm−1.
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(a) The optical domain and
source-detector configuration
for simulation study 1.

(b) The optical domain and
source-detector configuration
for simulation study 3. r1 =
0.50 cm, r2 = 0.75 cm, r3 =
1.0 cm, and r4 = 1.25 cm.

(c) The optical domain and
source-detector configuration
for simulation study 2. The
radius of the circles is 0.75 cm.

Figure 1. The setups used for the simulation studies 1, 2, and 3. The squares and
triangles denote the detectors and sources, respectively.

In order to obtain a series of of absorption imaging problems using the same setup,

we consider 5 values for the background absorption value. Then, for each imaging

problem, we consider three mesh scenarios: Uniform mesh for both forward and inverse

problems; adaptive mesh for the forward problem and uniform mesh for the inverse

problem; and adaptive meshes for both forward and inverse problems. We refer to

Table 2 for a brief outline of the first simulation study.

Table 2. The mesh scenarios and the background µa values in simulation study 1.

Mesh (Forward) Mesh (Inverse) Background µa (cm−1)

Uniform Uniform 0.032, 0.036, 0.040, 0.044, 0.050

Adaptive Uniform 0.032, 0.036, 0.040, 0.044, 0.050

Adaptive Adaptive 0.032, 0.036, 0.040, 0.044, 0.050

The uniform mesh used for the forward problem discretization has 625 nodes and

is shown in Figure 2(a). The uniform mesh for the inverse problem has 313 nodes and

is shown in Figure 2(b). We use the algorithms described in Sections 5.1 and 5.2 to

generate the adaptive meshes for the forward and inverse problems. The number of

nodes in each of the adaptive meshes used for the forward problem does not exceed 750.

An example for the adaptive mesh generated for a source located at (1.0, 0) is shown

in Figure 2(c). For an example, the adaptive mesh for the inverse problem generated

for the case where the background µa = 0.050 cm−1 has 418 nodes and is shown in

Figure 2(d).
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(c) The adaptive mesh generated for the
forward problem for the source located at
(1.0,0): Background µa = 0.050 cm−1.
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(d) The adaptive mesh generated for the
inverse problem solution, with 418 nodes.
Background µa = 0.040 cm−1.

Figure 2. Examples of meshes used in the first simulation study.

For the inverse problem, we set the regularization parameter λ to 10−7 in all

experiments. We consider the image reconstructed by using fine uniform meshes (61×61

nodes for the forward problem and 61×61 nodes for the inverse problem) as the reference

image, which is assumed to possess no error due to discretization. We compute the error

‖αλ − α̃λ
n‖L1(Ω) for each image reconstruction and tabulate the results in Table 3. We

see that the error in the images reconstructed by using uniform meshes for both forward

and inverse problems is significantly reduced by the use of adaptively refined meshes.

A similar behavior is observed for all choices of background absorption value.

We present image reconstructions in Figures 3 and 4 for the two extreme cases,

where the background absorption value is equal to 0.032 and 0.050 cm−1, respectively.

Figures 3(a) and 4(a) display the reference images used to compute the error values

given in Table 3. Figures 3(c) and 3(d) show that the optical heterogeneity is resolved
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Table 3. The error ‖αλ − α̃λ‖L1(Ω) for each experiment described in the simulation
study 1 and Table 2. The first column shows the type of the meshes used in the forward
and inverse problems, respectively. The unit of background µa is cm−1.

Background µa: 0.032 0.036 0.040 0.044 0.050

Uniform-Uniform ‖αλ − α̃λ
n‖L1(Ω) : 0.2325 0.2559 0.2773 0.2932 0.3013

Adaptive-Uniform ‖αλ − α̃λ
n‖L1(Ω) : 0.1238 0.1139 0.1166 0.1209 0.1278

Adaptive-Adaptive ‖αλ − α̃λ
n‖L1(Ω) : 0.1043 0.0997 0.0998 0.1003 0.1009

better by using adaptive meshes as compared to the reconstructed image obtained by

using uniform meshes, which is shown in Figure 3(b). These results are consistent with

the error values given in Table 3. A similar trend is seen in Figures 4(c) and 4(d). Note

that the number of nodes in the adaptive meshes is almost equal to the number of nodes

that the uniform meshes have. In Figure 5, we show the cross-sectional views from the

reconstructed images. We see that the use of coarse uniform meshes fails to resolve the

circular heterogeneity especially for the case in which the background µa = 0.032 cm−1.

6.2. Simulation Study 2

In this study, we consider the geometry shown in Figure 1(b). To simulate the optical

data, we use the same source-detector configuration considered in the first simulation

study. We simulate the optical data by solving the diffusion equation at ω = 0 on a

fine uniform grid with 61 nodes along x and y directions, where the refractive index

mismatch parameter a = 3. The diffusion coefficient D(x) is assumed to be constant

and D(x) = 0.0410 cm.

We consider 4 different radii for the circular heterogeneity with µa = 0.20 cm−1

embedded in a background with µa = 0.040 cm−1 as shown in Figure 1(b). For each

case, we compute the error for different mesh scenarios, similar to the first simulation

study: Uniform mesh for both forward and inverse problems; adaptive mesh for the

forward problem and uniform mesh for the inverse problem; and adaptive meshes for

both forward and inverse problems. The adaptive meshes for this simulation study were

generated based on Theorems 1 and 2, and the mesh generation algorithms described

in the first simulation study and Section 5. The uniform meshes used for the forward

and inverse problems are identical to those used in the first simulation study. We note

that the number of nodes in the adaptive meshes generated for the forward and inverse

problems is close to the number of nodes in the corresponding uniform meshes.

In Table 4, we tabulate the error norm ‖αλ − α̃λ
n‖ obtained for each heterogeneity

size with different mesh choices. Table 4 shows that the error increases with increasing
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(a) The optical absorption image used as the
reference for error computations.
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(b) The reconstructed absorption image using the
uniform mesh in Figure 2(a) for the forward, and
the uniform mesh in Figure 2(b) for the inverse
problem.
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(c) The reconstructed absorption image using an
adaptive mesh for the forward, and the uniform
mesh in Figure 2(b) for the inverse problem.
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(d) The reconstructed absorption image using an
adaptive mesh for the forward, and the adaptive
mesh in Figure 2(d) for the inverse problem.

Figure 3. The reconstruction results of simulation study 1, with the background
µa = 0.032 cm−1.

heterogeneity size. We see that the reduction in the error as a result of using adaptive

meshes is more significant for smaller sized heterogeneities. However, further reduction

in the error norm ‖αλ− α̃λ
n‖ is possible by increasing the number of nodes in the meshes.

For brevity, we only show the reconstruction results for the extreme cases: r = 0.5

cm and r = 1.25 cm. We note that the regularization parameter λ = 5 × 10−9 in all

reconstructions. Figures 6(a) and 6(b) show the images used as the reference images αλ

in the calculation of the error norms ‖αλ− α̃λ
n‖ listed in Table 4. Figures 6(e)-6(f) show

that the adaptive meshes reduce the artifacts as compared to the images reconstructed
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reference for error computations.
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(b) The reconstructed absorption image using the
uniform mesh in Figure 2(a) for the forward, and
the uniform mesh in Figure 2(b) for the inverse
problem.
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(c) The reconstructed absorption image using an
adaptive mesh for the forward, and the uniform
mesh in Figure 2(b) for the inverse problem.
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(d) The reconstructed absorption image using an
adaptive mesh for the forward, and the adaptive
mesh in Figure 2(d) for the inverse problem.

Figure 4. The results of simulation study 1, with the background µa = 0.050 cm−1.

by using uniform meshes, which are shown in Figures 6(c)-6(d).

6.3. Simulation Study 3

In this simulation study, we consider the geometry shown in Figure 1(c). The center of

the circular heterogeneity is moved vertically towards the detector side to see the effect

on the imaging accuracy. Next, we show how the error in the reconstructed images

due to discretization can be addressed by using appropriate meshes for the solutions of

the forward and inverse problems. In this context, we compare the results obtained by

using 1) uniform meshes, 2) the adaptive meshes generated using conventional a priori
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(a) The cross-sectional cuts taken from Fig-
ures 3(a), 3(b), and 3(d), along x direction at
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from the images shown in Figures 3(a), 3(d),
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(b) The cross-sectional cuts taken from Fig-
ures 4(a), 4(b), and 4(d), along x direction at
y = 3. The solid, square, and diamond lines cor-
respond to the cross-sectional cuts taken from
the images shown in Figures 4(a), 4(d), and 4(b),
respectively.

Figure 5. The cross-sectional views from the reconstructed images in simulation study
1, corresponding to the cases where the background µa = 0.032 and µa = 0.050 cm−1,
respectively.

Table 4. The L1 norm of αλ and the error ‖αλ − α̃λ
n‖L1(Ω) for each experiment

described in the simulation study 2. The first column shows the type of the meshes
used in the forward and inverse problems, respectively. The radius of the circular
heterogeneity is given in cm.

Radius: 0.50 0.75 1.0 1.25

‖αλ‖L1(Ω): 0.7196 1.3760 1.4759 1.7817

Uniform-Uniform ‖αλ − α̃λ
n‖L1(Ω): 0.5622 0.5706 0.5850 0.6337

Adaptive-Uniform ‖αλ − α̃λ
n‖L1(Ω): 0.2153 0.2776 0.3766 0.5113

Adaptive-Adaptive ‖αλ − α̃λ
n‖L1(Ω): 0.2020 0.2630 0.3592 0.5034

discretization error estimates, and 3) the adaptive meshes proposed in this study. By

conventional error estimates, we mean the a priori discretization error estimates (3.24)

and (3.25) for the solution of the forward problem, and the a priori interpolation error

estimate (4.40) for the solution of the inverse problem.

To simulate the optical data, we use the same source-detector configuration

considered in the first simulation study. We simulate the optical data by solving

the diffusion equation at ω = 0 on a fine uniform grid with 61 nodes along x and y
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directions, where the refractive index mismatch parameter a = 3. We note that, in

all reconstructions, the background absorption value is set to µa = 0.04 cm−1 and the

diffusion coefficient D(x) is assumed to be constant and D(x) = 0.0410 cm.

The uniform meshes used in this simulation study are identical to the ones used in

simulation studies 1 and 2. Sample meshes for the forward problem solution using the

conventional and the proposed adaptive meshing strategies are shown in Figures 7(a)-

7(b) and Figures 8(c) and 8(d), respectively. We see that the conventional adaptive

mesh generation strategy leads to meshes refined around only sources or detectors, but

not both. In contrast, Figures 8(c) and 8(d) show that the proposed strategy results in

adaptive meshes refined around sources, detectors, and the heterogeneity as well. This

observation is consistent with Theorem 2. The adaptive mesh for the inverse problem

solution, which was generated using the a priori interpolation error estimate (4.40) is

shown in Figure 8(f). Note that the mesh was generated for the case where the circular

heterogeneity was centered at (3.0, 3.5). The mesh generated based on Theorem 1

(Figure 8(e)) provides higher resolution close to the sources and detectors as compared

to the mesh shown in Figure 8(f), which is merely refined around the heterogeneity.

In this simulation study, we consider 4 different positions for the center of the

circular heterogeneity with radius 0.75 cm, along y−axis: center at (3.0,3.0), (3.0,3.5),

(3.0,4.0), and (3.0,4.5), respectively. Similar to the previous simulations, we compute

the error in the reconstructed images for all cases, and compare the error values attained

by different meshing strategies. Finally we present the reconstructed images obtained

by using different mesh strategies corresponding to the case where the circular inclusion

is centered at (3.0, 3.5) and (3.0, 4.0).

Using the meshes for the forward problem discretization (see Figures 7(a)-

7(b)) which were generated by using the conventional a priori discretization error

estimates (3.24)-(3.25) leads to the image reconstructions shown in Figures 7(c)

and 7(d), where the regularization parameter λ = 10−8. We observe that the finite-

dimensional operator does not provide a stable solution. We note that using an adaptive

mesh for the inverse problem solution does not change the outcome (Figure 7(d)). Note

also that the meshes generated by using the conventional a priori discretization error

estimates (3.24)-(3.25) are sufficient to provide accurate finite element approximations

to the actual solutions gj and g∗i . Therefore, the unstable reconstructions can be

attributed to the errors K − K̃ and γ − γ̃, due to inappropriate discretization as noted

by Theorem 2. In consistence with Theorem 2, this observation suggests that solving

the forward problem accurately does not necessarily imply that approximate operator

K̃ and γ̃ are error-free. Therefore, in order to address such problems, one has to follow

a discretization scheme based on Theorem 2 for the solution of the forward problem,

which takes into account the interaction between the solutions of the diffusion equation

and the associated adjoint problem, as described in Section 5.1.
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In order to suppress the severe artifacts observed in Figures 7(c) and 7(d), we

increased the regularization parameter and set λ = 10−6. The resulting images are shown

in Figures 7(e) and 7(f). As noted by Theorems 1 and 2, increasing the regularization

parameter reduces the error in the reconstructed images. However, increasing the

regularization parameter will also compromise the image quality and lead to over-

smoothed images. In order to address the instability issue without degrading the

image quality by using high regularization parameters, we modified the adaptive mesh

generation method that lead to the meshes shown in Figures 7(a)-7(b). In this context,

for the first 2 refinements, we used the proposed mesh generation algorithm based on

Theorem 2 to generate an initial adaptive mesh; and for the next 2 refinements, we

used the conventional error estimates (3.24)-(3.25). Following this modification, the

samples of the resulting adaptive meshes are shown in Figures 8(a) and 8(b). For a

comparison, we also present in Figures 8(c)-8(d), the adaptive meshes generated by

using the proposed adaptive mesh generation algorithms as described in Section 5.1.

We observe that the meshes shown in Figures 8(c)-8(d), indicate further refinement

around sources, detectors and the circular heterogeneity as compared with the adaptive

meshes shown in Figures 8(a) and 8(b).

Examples of the adaptive meshes generated for the inverse problem based on

Theorem 1 and the conventional a priori interpolation estimate (4.40) are shown in

Figures 8(e) and 8(f), respectively. We observe that the adaptive mesh shown in

Figure 8(e) provides higher resolution around sources and detectors as compared to

the adaptive mesh shown 8(f).

We note that the uniform meshes used in this simulation study are identical to

those used in the previous simulation studies.

In order to compare the performance of the conventional and proposed adaptive

mesh strategies, we perform 4 experiments and compute the error in the reconstructed

optical absorption images. For each experiment we consider 5 different mesh strategies

and refer to Table 5 for the description of these experiments.

We show the reconstructed optical absorption images for the two cases in Figures 9

and 10, corresponding to the circular heterogeneity centered at (3.0,3.5) and (3.0,4.0),

respectively. Figures 9(a) and 10(a) show the reference absorption image reconstructions

which are used to compute the error in the reconstructed optical images.

Figure 9(b) shows the image reconstructed using coarse uniform meshes for both

the forward and inverse problems, for the case where the circular inclusion is centered

at (3.0,3.5) where the regularization parameter was set to λ = 10−8. With the same

value of the regularization parameter, Figures 9(c) and 9(e) show the images obtained

by using the adaptive meshes based on Theorems 2 and 1, respectively. We observe

the improvements especially around the boundaries. Using the conventional adaptive

meshes for the forward problem solution, which were modified around sources and
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Table 5. The relevant parameters in the experiments 1-5 in simulation study 3.
The acronym “Conv.” implies that the corresponding mesh was generated using
the conventional a priori discretization error estimates (3.24)-(3.25) for the forward
problem solution, and the conventional a priori interpolation error estimate (4.40)
for the inverse problem solution. The acronym “Prop.” refers to the adaptive
meshes generated by using the proposed adaptive mesh generation algorithms based on
Theorems 1 and 2, for the inverse and forward problem solutions, respectively. The last
column in the table shows the coordinates of the center of the circular heterogeneity,
considered in each experiment.

Mesh (Forward) Mesh (Inverse) Center at:

Exp. 1 Uniform Uniform [(3.0,3.0), (3.0,3.5), (3.0,4.0), (3.0,4.5)]

Exp. 2 Adaptive (Conv.) Uniform [(3.0,3.0), (3.0,3.5), (3.0,4.0), (3.0,4.5)]

Exp. 3 Adaptive (Conv.) Adaptive (Conv.) [(3.0,3.0), (3.0,3.5), (3.0,4.0), (3.0,4.5)]

Exp. 4 Adaptive (Prop.) Uniform [(3.0,3.0), (3.0,3.5), (3.0,4.0), (3.0,4.5)]

Exp. 5 Adaptive (Prop.) Adaptive (Prop.) [(3.0,3.0), (3.0,3.5), (3.0,4.0), (3.0,4.5)]

detectors as noted before, we ran into a similar instability problem. Therefore, in order

to obtain better reconstructions with the conventional adaptive meshes, we set the

regularization parameter λ = 10−7 in the corresponding inverse problem formulations.

The resulting reconstructed images are shown in Figures 9(d) and 9(f). In this case,

we observe that the use of conventional adaptive meshes for the forward and inverse

problems does not improve the image quality as compared to the reconstructed image

shown in Figure 9(b), which is obtained by using coarse uniform meshes.

We observe similar results for the case where the circular inclusion is centered

at (3.0,4.0). We note that the regularization parameter is set to λ = 10−8 for all

reconstructions except for the reconstructions obtained by using conventional adaptive

meshes, in which case λ = 10−7. Figures 9 show the reconstructed images corresponding

to all meshing strategies.

Table 6 shows the error norm computations for all cases. The error values are

consistent with Figures 9 and 10. In all cases, the proposed adaptive meshes significantly

reduce the error in the reconstructed images. Furthermore, the image quality is enhanced

by merely appropriate discretization, without having to increase the regularization

parameter. In contrast, the conventional adaptive meshes perform worse than uniform

meshes even though a higher regularization parameter is used.

7. Conclusion

In this work, we presented an error analysis to show the relationship between the error

in the reconstructed optical absorption images and the discretization of the forward
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Table 6. The error ‖αλ − α̃λ
n‖L1(Ω) for each experiment described in the simulation

study 3. The first column shows the type of the meshes used in the forward and inverse
problems, respectively. The superscript ‘C’ denotes that the corresponding adaptive
mesh generation is based on conventional a priori error estimates.

Radius at: (3.0,3.0) (3.0,3.5) (3.0,4.0) (3.0,4.5)

Uniform-Uniform ‖αλ − α̃λ
n‖L1(Ω): 0.4539 0.4606 0.4733 0.4956

Adaptive-Uniform ‖αλ − α̃λ
n‖L1(Ω): 0.2690 0.2695 0.2634 0.2507

Adaptive-Adaptive ‖αλ − α̃λ
n‖L1(Ω): 0.2433 0.2455 0.2459 0.2434

Adaptive-Uniform ‖αλ − α̃λ,C
n ‖L1(Ω): 0.7989 0.7596 0.7072 0.6418

Adaptive-Adaptive ‖αλ − α̃λ,C
n ‖L1(Ω): 0.8011 0.7614 0.7070 0.6351

and inverse problems. We summarized the implications of the error analysis in two

theorems and proposed novel adaptive mesh generation algorithms for the forward and

inverse problems. The theorems provide an insight into the impact of forward and

inverse problem discretizations on the accuracy of the reconstructed optical absorption

images. These theorems show that the error in the reconstructed optical image due

to the discretization of each problem is bounded by roughly the multiplication of the

discretization error in the corresponding solution and the solution of the other problem.

Theorem 2 shows that solving the diffusion equation and the associated adjoint problem

accurately may not ensure small values for ‖K̃−K‖ and ‖γ−γ̃‖, which may lead to large

errors in the reconstructed optical images, depending on the value of the regularization

parameter as well.

Based on the error analysis, we provided two practical adaptive mesh generation

algorithms, one for the forward and one for the inverse problem, which take the

interdependence between the two problems into account. Our simulation experiments

showed that the proposed mesh generation algorithms significantly improve the accuracy

of the reconstructed optical images while keeping the number of unknowns in the forward

and inverse problems within the allowable limits. Furthermore, in our simulation studies,

we showed that the adaptive mesh generation algorithms based on conventional error

estimates may lead to high error in the reconstructed images.

The error analysis presented in this work can be extended to show the effect of the

discretization error on the accuracy of simultaneous reconstruction of scattering and

absorption coefficients. Our future work will focus on the error in the simultaneous

reconstruction of scattering and absorption, resulting from the discretization of the

forward and inverse problem. Note that the error analysis introduced in this paper is

not limited to DOT, and can easily be adapted for similar inverse parameter estimation
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problems.
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Appendix

Appendix A. Boundedness of Aa

‖Aaα‖l1 =

Nd,Ns∑
i,j

∣∣∣ ∫
Ω

H(xj
s,x

i
d; x́)α(x́)dx́

∣∣∣ . (A.1)

We can write the following inequality:

‖Aaα‖l1 ≤
Nd,Ns∑

i,j

∫

Ω

|H(xj
s, x

i
d; x́)α(x́)|dx́

≤
( ∑Nd,Ns

i,j

∫
Ω
|H(xj

s,x
i
d; x́)|dx́

)
‖α(x́)‖∞. (A.2)

Using Schwarz’ inequality, we can write an upper bound for the summation as follows:

Nd,Ns∑
i,j

∫

Ω

|H(xj
s,x

i
d; x́)|dx́ =

Nd,Ns∑
i,j

‖g∗(x́; xi
d)g(x́; xj

s)‖L1(Ω)

≤
Nd,Ns∑

i,j

‖g∗(x́; xi
d)‖0‖g(x́; xj

s)‖0

≤ NdNs max
i
‖g∗i ‖0 max

j
‖gj‖0, (A.3)

which leads to

‖Aaα‖l1 ≤ NdNs max
i
‖g∗i ‖0 max

j
‖gj‖0‖α‖∞.

Therefore an upper bound for the norm of Aa is given by

‖Aa‖L∞(Ω)→l1 ≤ NdNs max
i
‖g∗i ‖0 max

j
‖gj‖0. (A.4)

The boundedness of gj and g∗i imply that Aa is bounded. ¤
Note that for actual Dirac-delta source and Dirac-delta adjoint source, gj and g∗i

are also bounded such that gj, g
∗
i ∈ L2(Ω) [22].

Appendix B. Compactness of Aa

Aa is bounded by (A.4). Furthermore Aa maps the infinite dimensional subspace

L∞ to a finite-dimensional subspace CNd×Ns , that is the range R(Aa) of Aa satisfies

R(Aa) ∈ CNd×Ns due to the finite number of sources and detectors. As a result, Aa is

compact [21]. The inverse problem is ill-posed as a consequence of compactness [21].

¤
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Appendix C. Proof of the Lemma

The identity operator I is a bounded operator with bounded inverse and (PnI)−1 = I :

Yn → Yn. Furthermore ‖Pn‖ is bounded [5]

‖Pn‖ = max
x∈Ω

n∑

k=1

|Lk(x)|, (C.1)

where Lk(x) are the piecewise linear Lagrange basis functions. A = A∗
aAa is bounded

and compact, and K = λI + A is injective. As a result, by Theorem 13.7 in [21], the

projection method also converges for K = λI + A. Convergence of projection for K

implies (PnK)−1PnKαλ → αλ, n →∞ for (PnK)−1PnK : X → Xn [21].

It follows from the proof of Theorem 13.7 in [21] that [I+ 1
λ
PnA]−1 : Yn → Xn exists

and is uniformly bounded for all sufficiently large n. Then from PnK = λPn[I+ 1
λ
PnA] =

λ[I + 1
λ
PnA], it follows that PnK : Xn → Yn is invertible for all sufficiently large n with

the inverse given by

(PnK)−1 = [I +
1

λ
PnA]−1 1

λ
. (C.2)

As a result we can write (PnK)−1PnK as follows:

(PnK)−1PnK = [I +
1

λ
PnA]−1 1

λ
PnK. (C.3)

Thus,

‖(PnK)−1PnK‖X→Xn ≤ CM
‖K‖

λ
(C.4)

using the fact that (I + 1
λ
PnA)−1 is uniformly bounded, that is ‖(I + 1

λ
PnA)−1‖Yn→Xn ≤

CM where CM > 0 is independent of n and ‖Pn‖Y→Yn = 1 for piecewise linear Lagrange

basis functions. ¤

Appendix D. Solution of the Model Problem

In order to initialize the adaptive mesh for the solution of the forward problem (provided

D(x) = D and µa(x) = µa are spatially constant), we use an analytical solution to

compute the estimates of gj and g∗i . To derive an analytical 2D solution, we use polar

coordinates to rewrite (2.1):

1

ρ

∂

∂ρ
(ρ

∂g

∂ρ
) +

1

ρ

∂

∂θ
(ρ

∂g

∂θ
) + K2

Ωg = − 4π

ρ

δ(ρ− ρs)δ(θ − θs)

D
,

where we consider an unbounded domain, model the source by a Dirac-delta function

and K2
Ω = −(µac + jω)/cD. Then the solution is given by [18]

g(ρ, ρs; θ, θs) =
4

Dπ

{
1
2
I0(kΩρ<)K0(kΩρ>) +

∑∞
m=1 cos[m(θ − θs)]Im(kΩρ<)Km(kΩρ>)

}
,
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where Im and Km are the modified Bessel functions of the first and second kind,

respectively [1] and kΩ =
√
−K2

Ω.

The solution of the problem in 3D can be derived in a similar manner [18, 29].
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(a) The optical absorption image used as the
reference for error computations. The image
corresponds to the reconstruction of the circular
heterogeneity of radius 0.5 cm.
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(b) The optical absorption image used as the
reference for error computations. The image
corresponds to the reconstruction of the circular
heterogeneity of radius 1.25 cm.
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(c) The reconstructed absorption image using
the uniform mesh in Figure 2(a) for the forward,
and the uniform mesh in Figure 2(b) for the
inverse problem.
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(d) The reconstructed absorption image using
the uniform mesh in Figure 2(a) for the forward,
and the uniform mesh in Figure 2(b) for the
inverse problem.
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(e) The reconstructed absorption image using
adaptive meshes for both the forward and the
inverse problems.
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(f) The reconstructed absorption image using
an adaptive mesh for both the forward and the
inverse problems.

Figure 6. The results of simulation study 2. The left and right columns show the
reconstructed images regarding the optical heterogeneity with radius 0.50 cm, and 1.25
cm, respectively. The background µa = 0.040 cm−1 in all of the reconstructions. The
reference images shown in (a) and (b) are obtained using a uniform mesh with 61× 61
nodes in both the forward and inverse problems.
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(a) The adaptive mesh with 865 nodes for
the forward problem solution for the source
located at (2.0,0), generated based on the
conventional a priori error estimate (3.24).
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(b) The adaptive mesh with 865 nodes for
the forward problem solution for the detector
located at (4.0,6.0), generated based on the
conventional a priori error estimate (3.25).
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(c) The reconstructed optical image using
adaptive mesh for the forward and uniform
mesh for the inverse problem. λ = 10−8.

0

2

4

6

0
1

2
3

4
5

6
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

−0.5

0

0.5

1

1.5

2

2.5

3

(d) The reconstructed optical image using
adaptive meshes for both the forward and
inverse problems.λ = 10−8.
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(e) The reconstructed optical image using
adaptive mesh for the forward and uniform
mesh for the inverse problem. λ = 10−6.
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(f) The reconstructed optical image using
adaptive meshes for both the forward and
inverse problems. λ = 10−6.

Figure 7. (a)-(b) Samples of adaptive meshes in the third simulation study, generated
by using the conventional error estimates (3.24) and (3.25), which led to unstable
optical image reconstruction shown in (c) to (f), for the circular heterogeneity centered
at (3.0, 3.5). (c)-(d) The unstable optical image reconstructions in the third simulation
study, obtained by using the adaptive meshes for the forward problem solution whose
examples are shown in (a)-(b). λ = 10−8. (e)-(f) The unstable optical image
reconstructions in the third simulation study, obtained by using the adaptive meshes
for the forward problem solution whose examples are shown in (a)-(b). λ was set to
10−6 to suppress the significantly large artifacts observed in (c)-(d).
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(a) The adaptive mesh with 942 nodes for
the forward problem solution for the source
located at (2.0, 0), obtained by refining the
adaptive mesh shown in Figure 7(a) around
the detectors.
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(b) The adaptive mesh with 955 nodes
for the forward problem solution for the
detector located at (4.0, 6.0), obtained
by refining the adaptive mesh shown in
Figure 7(b) around the sources.
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(c) The adaptive mesh with 895 nodes
for the forward problem solution for the
source located at (2.0, 0), generated based
on Theorem 2.
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(d) The adaptive mesh with 896 nodes
for the forward problem solution for the
detector located at (4.0, 6.0), generated
based on Theorem 2.
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(e) The adaptive mesh with 691 nodes
for the inverse problem solution, generated
based on Theorem 1.
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(f) The adaptive mesh with 609 nodes
for the inverse problem solution, generated
based on conventional error estimates.

Figure 8. Samples of adaptive meshes used in the third simulation study, which led
to the optical image reconstructions shown in Figure 10. The meshes were generated
for the circular heterogeneity centered at (3.0,4.5).
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(a) The absorption image used as the reference
in the error computations.
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(b) The reconstructed absorption image using
the uniform mesh in Figure 2(a) for the forward,
and the uniform mesh in Figure 2(b) for the
inverse problem.
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(c) The reconstructed absorption image using
adaptive meshes based on Theorem 2 for the
forward, and the uniform mesh in Figure 2(b)
for the inverse problem.
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(d) The reconstructed absorption image using
adaptive meshes based on a priori error
estimates (3.24) and (3.25) for the forward, and
the uniform mesh in Figure 2(b) for the inverse
problem.
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(e) The reconstructed absorption image using
adaptive meshes based on Theorem 2 for the
forward, and using the adaptive mesh based on
Theorem 1 for the inverse problem.
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(f) The reconstructed absorption image using
adaptive meshes based on a priori error
estimates (3.24) and (3.25) for the forward, and
the interpolation error estimate (4.40) for the
inverse problem.

Figure 9. The reconstructed optical images regarding the circular heterogeneity
centered at (3.0, 3.5).
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(a) The absorption image used as the reference
in the error computations.
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(b) The reconstructed absorption image using
the uniform mesh in Figure 2(a) for the forward,
and the uniform mesh in Figure 2(b) for the
inverse problem.
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(c) The reconstructed absorption image using
adaptive meshes based on Theorem 2 for the
forward, and the uniform mesh in Figure 2(b)
for the inverse problem.
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(d) The reconstructed absorption image using
adaptive meshes based on a priori error
estimates (3.24) and (3.25) for the forward, and
the uniform mesh in Figure 2(b) for the inverse
problem.
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(e) The reconstructed absorption image using
adaptive meshes based on Theorem 2 for the
forward, and the adaptive mesh based on
Theorem 1 for the inverse problem.
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(f) The reconstructed absorption image using
adaptive meshes based on on a priori error
estimates (3.24) and (3.25) for the forward, and
the interpolation error estimate (4.40) for the
inverse problem.

Figure 10. The reconstructed optical images regarding the circular heterogeneity
centered at (3.0, 4.0).
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